This work establishes a correlation between solvent properties and the charge transport performance of solution‐processed organic thin films through interpretable machine learning. Strong dispersion interactions (δD), moderate hydrogen bonding (δH), closely matching and compatible with the solute (quadruple thiophene), and a small molar volume (MolVol)
Tianhao Tan, Lian Duan, Dong Wang
wiley +1 more source
Structural model of hard overburden shell in thick coal seam and its application. [PDF]
Fu X +5 more
europepmc +1 more source
Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang +4 more
wiley +1 more source
Research on deformation characteristics and mechanisms of an open pit coal mine landslide event in extremely cold region. [PDF]
Du H, Wan Y, Wang D, Cao B, Liu G.
europepmc +1 more source
The Challenge of Handling Structured Missingness in Integrated Data Sources
As data integration becomes ever more prevalent, a new research question that emerges is how to handle missing values that will inevitably arise in these large‐scale integrated databases? This missingness can be described as structured missingness, encompassing scenarios involving multivariate missingness mechanisms and deterministic, nonrandom ...
James Jackson +6 more
wiley +1 more source
Mine Gas Time-Series Data Prediction and Fluctuation Monitoring Method Based on Decomposition-Enhanced Cross-Graph Forecasting and Anomaly Finding. [PDF]
Yuan L.
europepmc +1 more source
A physics‐guided machine learning framework estimates Young's modulus in multilayered multimaterial hyperelastic cylinders using contact mechanics. A semiempirical stiffness law is embedded into a custom neural network, ensuring physically consistent predictions. Validation against experimental and numerical data on C.
Christoforos Rekatsinas +4 more
wiley +1 more source
Cause-and-effect relationships in a nonlinear model of Bitcoin's energy use and price volatility effect. [PDF]
Zournatzidou G.
europepmc +1 more source
A Generalized Framework for Data‐Efficient and Extrapolative Materials Discovery for Gas Separation
This study introduces an iterative supervised machine learning framework for metal‐organic framework (MOF) discovery. The approach identifies over 97% of the best performing candidates while using less than 10% of available data. It generalizes across diverse MOF databases and gas separation scenarios.
Varad Daoo, Jayant K. Singh
wiley +1 more source
Finding the needle in the haystack-An interpretable sequential pattern mining method for classification problems. [PDF]
Grote A, Hariharan A, Weinhardt C.
europepmc +1 more source

