Results 281 to 290 of about 1,261,489 (334)

Down‐regulation of Shh in the hair follicles of mice during chemotherapy‐induced hair loss is mediated by the JAK/STAT1 signaling pathway

open access: yesFEBS Open Bio, EarlyView.
We found that during chemotherapy‐induced alopecia (CIA), Sonic hedgehog (Shh) expression significantly decreased in hair follicle Shh+ cells, whereas the Janus‐activated kinase/signal transducer and activator of transcription 1 (JAK/STAT1) signaling pathway was markedly activated.
Ruifang Fan   +6 more
wiley   +1 more source

Raman‐based label‐free microscopic analysis of the pancreas in living zebrafish larvae

open access: yesFEBS Open Bio, EarlyView.
Forward stimulated Raman scattering (F‐SRS) and epi coherent anti‐Stokes Raman scattering (E‐CARS) allow label‐free discrimination of distinct subcellular structures in the pancreas of living zebrafish larvae. Given the straightforward applicability, we anticipate broad implementation of Raman microscopy in other organs and across various biomedical ...
Noura Faraj   +3 more
wiley   +1 more source

Bioglass-Reinforced Spongin-Like Collagen Scaffolds for Osteoporotic Bone Tissue Engineering. [PDF]

open access: yesACS Omega
de Almeida Cruz M   +15 more
europepmc   +1 more source

Engineering tandem VHHs to target different epitopes to enhance antibody‐dependent cell‐mediated cytotoxicity

open access: yesFEBS Open Bio, EarlyView.
Tandem VHH targeting distinct EGFR epitopes were engineered into a monovalent bispecific antibody (7D12‐EGA1‐Fc) with more potent ADCC without increasing affinity to EGFR. Structural modeling of 7D12‐EGA1‐Fc showed cross‐linking of separate EGFR domains to enhance CD16a engagement on NK cells.
Yuqiang Xu   +5 more
wiley   +1 more source

Advances in tissue engineering for the repair of growth plate injuries. [PDF]

open access: yesFront Bioeng Biotechnol
Wang W   +5 more
europepmc   +1 more source

End-capped Pluronics© as building blocks for 3D tissue engineering scaffolds [PDF]

open access: yes, 2012
Berneel, Elke   +4 more
core   +1 more source

FGFR Like1 drives esophageal cancer progression via EMT, PI3K/Akt, and notch signalling: insights from clinical data and next‐generation sequencing analysis

open access: yesFEBS Open Bio, EarlyView.
Clinical analysis reveals significant dysregulation of FGFRL1 in esophageal cancer (EC) patients. RNAi‐coupled next‐generation sequencing (NGS) and in vitro study reveal FGFRL1‐mediated EC progression via EMT, PI3K/Akt, and Notch pathways. Functional assays confirm its role in tumor growth, migration, and invasion.
Aprajita Srivastava   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy