Results 71 to 80 of about 272,456 (331)

Single Pair of Weyl Points Evolve From Spin Group‐Protected Nodal Line in Half‐Metallic Ferromagnet V3S4

open access: yesAdvanced Functional Materials, EarlyView.
A spin group (SG)‐based mechanism is proposed to realize a single pair of Weyl points. PT‐symmetric nodal lines (NLs) persist under T‐breaking, protected by the combination of SG and P symmetry. When considering spin‐orbit coupling, the SG‐protected NL will split into Weyl points, which will also induce anomalous transport phenomena arising from ...
Shifeng Qian   +6 more
wiley   +1 more source

Topological Descriptors on Some Families of Graphs

open access: yesJournal of Chemistry, 2021
In view of the successful applications of graph theory, relationships between the biological activity and chemical structure have been developed. One of the popular topics in graph theory is problems relating to topological indices.
Iftikhar Ahmad   +3 more
doaj   +1 more source

Ad-Hoc Lanzhou Index

open access: yesMathematics, 2023
This paper initiates the study of the mathematical aspects of the ad-hoc Lanzhou index. If G is a graph with the vertex set {x1,…,xn}, then the ad-hoc Lanzhou index of G is defined by Lz˜(G)=∑i=1ndi(n−1−di)2, where di represents the degree of the vertex ...
Akbar Ali   +3 more
doaj   +1 more source

Critical analysis of topological charge determination in the background of center vortices in SU(2) lattice gauge theory

open access: yes, 2012
We analyze topological charge contributions from classical SU(2) center vortices with shapes of planes and spheres using different topological charge definitions, namely the center vortex picture of topological charge, a discrete version of F\~{F} in the
Faber, M.   +2 more
core   +1 more source

Synchrotron Radiation for Quantum Technology

open access: yesAdvanced Functional Materials, EarlyView.
Materials and interfaces underpin quantum technologies, with synchrotron and FEL methods key to understanding and optimizing them. Advances span superconducting and semiconducting qubits, 2D materials, and topological systems, where strain, defects, and interfaces govern performance.
Oliver Rader   +10 more
wiley   +1 more source

Fractional Skyrmion Tubes in Chiral‐Interfaced 3D Magnetic Nanowires

open access: yesAdvanced Functional Materials, EarlyView.
In chiral 3D helical magnetic nanowires, the coupling between the geometric and magnetic chirality provides a way to create topological spin states like vortex tubes. Here, it is demonstrated how the breaking of this coupling in interfaced 3D nanowires of opposite chirality leads to even more complex topological spin states, such as fractional ...
John Fullerton   +11 more
wiley   +1 more source

Topological transversals to a family of convex sets

open access: yes, 2010
Let $\mathcal F$ be a family of compact convex sets in $\mathbb R^d$.
H.L. Hiller   +17 more
core   +1 more source

Pentagonal 2D Altermagnets: Material Screening and Altermagnetic Tunneling Junction Device Application

open access: yesAdvanced Functional Materials, EarlyView.
From a database of 170 pentagonal 2D materials, 4 candidates exhibiting altermagnetic ordering are screened. Furthermore, the spin‐splitting and unconventional boundary states in the pentagonal 2D altermagnetic monolayer MnS2 are investigated. A MnS2‐based altermagnetic tunneling junction is designed and, through ab initio quantum transport simulations,
Jianhua Wang   +8 more
wiley   +1 more source

2D Multifunctional Spin‐Orbit Coupled Dirac Nodal Line Materials

open access: yesAdvanced Functional Materials, EarlyView.
A total of 473 nonmagnetic and antiferromagnetic 2D spin‐orbit coupled Dirac nodal line materials are screened, spanning 5 layer groups and 12 magnetic space groups. Furthermore, it integrates their topological properties with electride, multiferroic, and magnetic characteristics, revealing unique systems with expanded functionalities and promising ...
Weizhen Meng   +7 more
wiley   +1 more source

Prospects of Electric Field Control in Perpendicular Magnetic Tunnel Junctions and Emerging 2D Spintronics for Ultralow Energy Memory and Logic Devices

open access: yesAdvanced Functional Materials, EarlyView.
Electric control of magnetic tunnel junctions offers a path to drastically reduce the energy requirements of the device. Electric field control of magnetization can be realized in a multitude of ways. These mechanisms can be integrated into existing spintronic devices to further reduce the operational energy.
Will Echtenkamp   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy