Results 101 to 110 of about 4,751,333 (337)
Reconfigurable Metamirrors Based on Compliant Mechanisms
Providing the basis for numerous practical applications, the reconfigurability of metadevices is of great importance. Through the integration of controlled mechanical deformation with chiral meta‐atoms, a compliant mechanism based metamirror is demonstrated for active control over the polarization of electromagnetic waves.
Galestan Mackertich‐Sengerdy+3 more
wiley +1 more source
Emergent Spin‐Glass Behavior in an Iron(II)‐Based Metal–Organic Framework Glass
A one‐pot, solvent‐free synthesis yields an Fe2+‐based metal‐organic framework (MOF) glass featuring a continuous random network structure. The material exhibits spin‐glass freezing at 14 K, driven by topological‐disorder and short‐range magnetic frustration, showcasing the potential of MOF glasses as a plattform for cooperative magnetic phenomena in ...
Chinmoy Das+8 more
wiley +1 more source
This review explores how soft fibrous tissues achieve their remarkable mechanical behavior through recurring structural motifs across multiple length scales. It highlights key advances in mimicking these features using fiber‐reinforced hydrogels and hierarchical composites, offering insights into mechanical compatibility, flaw tolerance, and tear ...
Mirit Sharabi
wiley +1 more source
A 3D‐printed PCL scaffold coated with Arginine was laminated with electrospun polyvinyl alcohol (PVA) nanofibers containing cationic cellulose nanocrystals (PVA@cCNC). This created nanoisland‐like regions of aligned and random cCNC‐rich fibers. The composite scaffold, under fluid shear stimulation, modulated macrophage polarization from M1 to M2 ...
Keya Ganguly+8 more
wiley +1 more source
Multiscale Profiling of Nanoscale Metal‐Organic Framework Biocompatibility and Immune Interactions
A multi‐scale, hierarchical ‘Safety‐by‐Design’ pipeline combining machine learning, ex vivo human blood assays, and in vivo models enables the systematic immunotoxicity and biocompatibility profiling of nanoscale metal‐organic frameworks, accelerating their safe clinical translation. Abstract The clinical translation of metal‐organic frameworks (MOFs) –
Yunhui Zhuang+12 more
wiley +1 more source
PGXTEC) liquid technology is utilized to develop highly respirable yeast beta‐glucan (YBG) microparticles for the treatment of pulmonary fibrosis. Compared to conventionally processed spray‐dried YBG, PGXTEC‐YBG exhibits greatly improved aerodynamic properties, enhanced pro‐fibrotic macrophage uptake, and effective downregulation of pro‐fibrotic ...
Nate Dowdall+14 more
wiley +1 more source
Atomic‐Level Engineering of Synthetic Receptors for Enhanced Virus Detection and Removal
Advanced computational techniques are employed to design and optimize computationally designed imprinted receptors (CIRs) for virus detection and removal. CIR‐conjugated piezoelectric sensor achieves highly sensitive virus detection in water and human serum. CIR‐integrated membranes remove 100% of pathogenic viruses from contaminated water.
Eda Akin+8 more
wiley +1 more source
Computational Simulations of Metal–Organic Frameworks to Enhance Adsorption Applications
This review highlights the significance of molecular simulations in expanding the understanding of metal–organic frameworks (MOFs) and improving their gas adsorption applications. The historical development and implementation of molecular simulations in the MOF field are given, high‐throughput computational screening studies used to unlock the ...
Hilal Daglar+3 more
wiley +1 more source
Uncertainty Aware Structural Topology Optimization Via a Stochastic Reduced Order Model Approach [PDF]
This work presents a stochastic reduced order modeling strategy for the quantification and propagation of uncertainties in topology optimization. Uncertainty aware optimization problems can be computationally complex due to the substantial number of ...
Aguilo, Miguel A., Warner, James E.
core +1 more source