Results 51 to 60 of about 22,610 (167)
The $L^2$-torsion polytope of amenable groups
We introduce the notion of groups of polytope class and show that torsion-free amenable groups satisfying the Atiyah Conjecture possess this property. A direct consequence is the homotopy invariance of the $L^2$-torsion polytope among $G$-CW-complexes ...
Funke, Florian
core +1 more source
Units in group rings and blocks of Klein four or dihedral defect
Abstract We obtain restrictions on units of even order in the integral group ring ZG$\mathbb {Z}G$ of a finite group G$G$ by studying their actions on the reductions modulo 4 of lattices over the 2‐adic group ring Z2G$\mathbb {Z}_2G$. This improves the “lattice method” which considers reductions modulo primes p$p$, but is of limited use for p=2$p=2 ...
Florian Eisele, Leo Margolis
wiley +1 more source
Arithmetic sparsity in mixed Hodge settings
Abstract Let X$X$ be a smooth irreducible quasi‐projective algebraic variety over a number field K$K$. Suppose X$X$ is equipped with a p$p$‐adic étale local system compatible with an admissible graded‐polarized variation of mixed Hodge structures on the complex analytification of XC$X_{\operatorname{\mathbb {C}}}$.
Kenneth Chung Tak Chiu
wiley +1 more source
Equivariant Hilbert and Ehrhart series under translative group actions
Abstract We study representations of finite groups on Stanley–Reisner rings of simplicial complexes and on lattice points in lattice polytopes. The framework of translative group actions allows us to use the theory of proper colorings of simplicial complexes without requiring an explicit coloring to be given.
Alessio D'Alì, Emanuele Delucchi
wiley +1 more source
The geometry and arithmetic of bielliptic Picard curves
Abstract We study the geometry and arithmetic of the curves C:y3=x4+ax2+b$C \colon y^3 = x^4 + ax^2 + b$ and their associated Prym abelian surfaces P$P$. We prove a Torelli‐type theorem in this context and give a geometric proof of the fact that P$P$ has quaternionic multiplication by the quaternion order of discriminant 6.
Jef Laga, Ari Shnidman
wiley +1 more source
The three‐dimensional Seiberg–Witten equations for 3/2$3/2$‐spinors: A compactness theorem
Abstract The Rarita‐Schwinger–Seiberg‐Witten (RS–SW) equations are defined similarly to the classical Seiberg–Witten equations, where a geometric non–Dirac‐type operator replaces the Dirac operator called the Rarita–Schwinger operator. In dimension 4, the RS–SW equation was first considered by the second author (Nguyen [J. Geom. Anal. 33(2023), no. 10,
Ahmad Reza Haj Saeedi Sadegh +1 more
wiley +1 more source
Abstract The unification of conformal and fuzzy gravities with internal interactions is based on the facts that i) the tangent group of a curved manifold and the manifold itself do not necessarily have the same dimensions and ii) both gravitational theories considered here have been formulated in a gauge theoretic way.
Gregory Patellis +3 more
wiley +1 more source
A note on local formulae for the parity of Selmer ranks
Abstract In this note, we provide evidence for a certain ‘twisted’ version of the parity conjecture for Jacobians, introduced in prior work of Dokchitser, Green, Konstantinou and the author. To do this, we use arithmetic duality theorems for abelian varieties to study the determinant of certain endomorphisms acting on p∞$p^\infty$‐Selmer groups.
Adam Morgan
wiley +1 more source
A matrix description for torsion free abelian groups of finite rank
We describe torsion free abelian groups of finite rank applying matrices with polyadic entries. This description can be considered as a modification of the classic description by A. I. Mal'cev.
openaire +2 more sources
The relative Hodge–Tate spectral sequence for rigid analytic spaces
Abstract We construct a relative Hodge–Tate spectral sequence for any smooth proper morphism of rigid analytic spaces over a perfectoid field extension of Qp$\mathbb {Q}_p$. To this end, we generalise Scholze's strategy in the absolute case by using smoothoid adic spaces.
Ben Heuer
wiley +1 more source

