Results 51 to 60 of about 2,524 (214)
Rapid Fabrication of Self‐Propelled and Steerable Magnetic Microcatheters for Precision Medicine
A rapid Joule heating fabrication method for the production of self‐propelling, adaptive microcatheters, with tunable stiffness and integrated microfluidic channels is presented. Demonstrated through three microrobotic designs, including a steerable guiding catheter, an untethered wave‐crawling TubeBot, and a distal‐end propelled microcatheter, it was ...
Zhi Chen +5 more
wiley +1 more source
Sculpting the Future of Bone: The Evolution of Absorbable Materials in Orthopedics
This review summarizes the current status of polymeric, ceramic, and metallic absorbable materials in orthopedic applications, and highlights several innovative strategies designed to enhance mechanical performance, control degradation, and promote bioactivity. We also discuss the progress and translational potential of absorbable materials in treating
Zhao Wang +13 more
wiley +1 more source
Atomistic Mechanisms Triggered by Joule Heating Effects in Metallic Cu‐Bi Nanowires for Spintronics
Bi doped metallic Cu nanowires are promising for spintronics thanks to the stabilization of a giant spin Hall effect. However, heat resulting from current injection forces Bi to leave solution, forcing segregation into monoatomic decorations which evolve into coherent crystalline aggregates.
Alejandra Guedeja‐Marrón +6 more
wiley +1 more source
Multiphase printable organohydrogels with tunable microstructures are developed to control molecular transport pathways for immiscible cargo. The tortuosity and domain size of the colloidal phases are tuned by adjusting temperature and shear during processing, which enables the tailoring of diffusion kinetics due to different transport pathways.
Riley E. Dowdy‐Green +4 more
wiley +1 more source
On transfer homomorphisms of Krull monoids. [PDF]
Geroldinger A, Kainrath F.
europepmc +1 more source
Porous Iridium Oxide Inverse Opal Catalysts Enable Efficient PEM Water Electrolysis
Porous iridium‐based inverse opal (IrOx‐IO) structures are introduced as high‐performance, unsupported PEM‐WE anode catalysts. Their electrochemical behavior is analyzed through porosity/surface area tuning, voltage breakdown, and circuit modeling.
Sebastian Möhle +4 more
wiley +1 more source
Recent Advances in Collective Behaviors of Micro/Nanomotor Swarms
This review describes the driving forces behind collective motion, explores the self‐organization of micro/nano swarms across zero‐dimensional (0D), one‐dimensional (1D), two‐dimensional (2D), and three‐dimensional (3D) spaces, and highlights their potential in drug delivery, environmental monitoring, and smart devices.
Siwen Sun +4 more
wiley +1 more source
Heptazine‐assisted MR‐TADF emitters enable narrowband yellow emission with high efficiency at high luminance in solution‐processed OLEDs. In doped films, HAP‐3CzBN achieves a record‐fast kRISC of 1.19 × 106 s−1. The optimized HAP‐3CzBN devices deliver 15.5% EQEmax with negligible roll‐off at 1000 cd m−2, 11.2% at 10,000 cd m−2, and a benchmark 20.3 ...
Changfeng Si +5 more
wiley +1 more source
Automorphic Bloch theorems for hyperbolic lattices. [PDF]
Maciejko J, Rayan S.
europepmc +1 more source
Coupling a dual‐gradient carbonized framework with Fe2O3/Fe‐N‐C catalytic sites enables spatially synchronized sulfur redox across the entire electrode thickness in high‐mass‐loading Li–S batteries. This synergistic structural–catalytic design effectively mitigates concentration, ohmic, and electrochemical polarization, thereby achieving high‐capacity ...
Yuxuan Zhang +6 more
wiley +1 more source

