Results 251 to 260 of about 101,592 (299)

Ionic Conductive Textiles for Wearable Technology

open access: yesAdvanced Materials, EarlyView.
Recent advances in ionic conductive textiles for wearable technology are summarized, with a focus on soft ionic conductors that exhibit skin‐like flexibility and tissue‐like ion dynamics. Their structures, key characteristics, manufacturing methods, and diverse applications are reviewed.
Lingtao Fang, Yunlu Zhou, Qiyao Huang
wiley   +1 more source

Unperceivable Designs of Wearable Electronics

open access: yesAdvanced Materials, EarlyView.
Unperceivable wearable technologies seamlessly integrate into everyone's daily life, for healthcare and Internet‐of‐Things applications. By remaining completely unnoticed both visually and tactilely, by the user and others, they ensure medical privacy and allow natural social interactions.
Yijun Liu   +2 more
wiley   +1 more source

Biomimetic 3D‐Printed Adaptive Hydrogel Bioadhesives Featuring Superior Infection Resistance for Challenging Tissue Adhesion, Hemostasis, and Healthcare

open access: yesAdvanced Materials, EarlyView.
Biomimetic 3D‐printed hydrogel bioadhesives (PTLAs) are designed to address the limitations of existing bioadhesives, offering solutions for challenging tissue adhesion and enhanced healthcare. These PTLAs feature robust wet/underwater tissue adhesion/sealing, superior freeze/pressure and infection resistance, and adaptive self‐healing/gelling capacity,
Qi Wu   +4 more
wiley   +1 more source

Universal Method for Covalent Attachment of Hydrogels to Diverse Polymeric Surfaces for Biomedical Applications

open access: yesAdvanced Materials, EarlyView.
A universal, reagent‐free strategy is presented for covalently attaching hydrogels to diverse polymeric substrates through reactive oxygen species. The scalable, linker‐free approach enables robust adhesion and broad material compatibility, advancing the fabrication of hybrid solid–hydrogel systems for next‐generation biomedical devices and bioprinting
Masoud Zhianmanesh   +8 more
wiley   +1 more source

How Does a Delicate Insect Wing Resist Damage? Chitin Orientation Is Adapted to the Mechanical Demands at the Nanoscale

open access: yesAdvanced Materials, EarlyView.
Nanoscale chitin fiber orientations in the insect wing play a critical role in adapting to complex mechanical demands. These findings reveal two distinct and functionally adaptive chitin orientation patterns in the membranes that vary regionally, optimizing mechanical resilience and deformation control.
Chuchu Li   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy