Results 121 to 130 of about 457,315 (281)
Adaptability and sustainability of machine learning approaches to traffic signal control. [PDF]
Korecki M.
europepmc +1 more source
Microphysiological Systems of Lymphatics and Immune Organs
This review surveys recent progress in engineering lymphatic microenvironments and immune organoids within microphysiological systems, emphasizing innovative strategies to recreate the biochemical and biophysical complexity of native lymphatic tissues.
Ishita Jain +2 more
wiley +1 more source
Effects analysis of reward functions on reinforcement learning for traffic signal control. [PDF]
Lee H, Han Y, Kim Y, Kim YH.
europepmc +1 more source
Coronary microvascular dysfunction (CMD) targeting remains a challenge for precise diagnosis. This work presents a dual‐modal nanoprobe (T‐IR780‐NBs) that combines ultrasound contrast with near‐infrared fluorescence. This technology utilizes proteomics‐derived antibodies that specifically localize to inflamed and injured cardiac tissue, enabling ...
Xiaohui Xu +6 more
wiley +1 more source
Deep Reinforcement Learning for Traffic Signal Control Model and Adaptation Study. [PDF]
Tan J +6 more
europepmc +1 more source
We present a strategy to enhance magnetic hyperthermia therapy by modulating nanoparticle–cell interactions. Antibody‐functionalized magnetic nanoparticles targeting the low‐internalizing CCR9 receptor enable spatially controlled membrane anchoring, reducing aggregation and maximizing heat generation under alternating magnetic fields.
David Egea‐Benavente +5 more
wiley +1 more source
Biased Pressure: Cyclic Reinforcement Learning Model for Intelligent Traffic Signal Control. [PDF]
Ibrokhimov B, Kim YJ, Kang S.
europepmc +1 more source
A robust zinc‐based metal–organic framework (ZnMOF) enables dual functions of doxorubicin delivery and sustained Zn2+ release to trigger ferroptosis‐enhnaced chemotherapy. DOX@ZnMOF effectively depletes intracellular glutathione, suppresses GPX4, and elevates reactive oxygen species, leading to efficient oxidative DNA damage and apoptosis.
Xin Ma +5 more
wiley +1 more source
Intranasally administered hUMSC‐derived exosomes modulate the CRYAB–ARRDC3–Drp1 axis, alleviating mitochondrial dysfunction and ferroptosis, enhancing neuronal survival, reducing oxidative stress, and promoting functional recovery in ischemia‐reperfusion injury, offering a promising therapeutic strategy for ischemic stroke.
Rong ji +7 more
wiley +1 more source
Quantifying the impact of non-stationarity in reinforcement learning-based traffic signal control. [PDF]
Alegre LN, Bazzan ALC, da Silva BC.
europepmc +1 more source

