Results 181 to 190 of about 2,864,901 (314)

Infrared laser sampling of low volumes combined with shotgun lipidomics reveals lipid markers in palatine tonsil carcinoma

open access: yesMolecular Oncology, EarlyView.
Nanosecond infrared laser (NIRL) low‐volume sampling combined with shotgun lipidomics uncovers distinct lipidome alterations in oropharyngeal squamous cell carcinoma (OPSCC) of the palatine tonsil. Several lipid species consistently differentiate tumor from healthy tissue, highlighting their potential as diagnostic markers.
Leonard Kerkhoff   +11 more
wiley   +1 more source

The genetics of Richter syndrome reveals disease heterogeneity and predicts survival after transformation.

open access: yesBlood, 2011
D. Rossi   +24 more
semanticscholar   +1 more source

Recurrent cancer‐associated ERBB4 mutations are transforming and confer resistance to targeted therapies

open access: yesMolecular Oncology, EarlyView.
We show that the majority of the 18 analyzed recurrent cancer‐associated ERBB4 mutations are transforming. The most potent mutations are activating, co‐operate with other ERBB receptors, and are sensitive to pan‐ERBB inhibitors. Activating ERBB4 mutations also promote therapy resistance in EGFR‐mutant lung cancer.
Veera K. Ojala   +15 more
wiley   +1 more source

Author Correction: Binary vector copy number engineering improves Agrobacterium-mediated transformation. [PDF]

open access: yesNat Biotechnol
Szarzanowicz MJ   +17 more
europepmc   +1 more source

Redox regulation meets metabolism: targeting PRDX2 to prevent hepatocellular carcinoma

open access: yesMolecular Oncology, EarlyView.
PRDX2 acts as a central redox hub linking metabolic dysfunction‐associated steatohepatitis (MASH) to hepatocellular carcinoma (HCC). In normal hepatocytes, PRDX2 maintains redox balance and metabolic homeostasis under oxidative stress. In contrast, during malignant transformation, PRDX2 promotes oncogenic signaling, stemness, and tumor initiation ...
Naroa Goikoetxea‐Usandizaga   +2 more
wiley   +1 more source

Dammarenediol II enhances etoposide‐induced apoptosis by targeting O‐GlcNAc transferase and Akt/GSK3β/mTOR signaling in liver cancer

open access: yesMolecular Oncology, EarlyView.
Etoposide induces DNA damage, activating p53‐dependent apoptosis via caspase‐3/7, which cleaves PARP1. Dammarenediol II enhances this apoptotic pathway by suppressing O‐GlcNAc transferase activity, further decreasing O‐GlcNAcylation. The reduction in O‐GlcNAc levels boosts p53‐driven apoptosis and influences the Akt/GSK3β/mTOR signaling pathway ...
Jaehoon Lee   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy