Results 111 to 115 of about 115 (115)

Consolidate Overview of Ribonucleic Acid Molecular Dynamics: From Molecular Movements to Material Innovations

open access: yesAdvanced Engineering Materials, EarlyView.
Molecular dynamics simulations are advancing the study of ribonucleic acid (RNA) and RNA‐conjugated molecules. These developments include improvements in force fields, long‐timescale dynamics, and coarse‐grained models, addressing limitations and refining methods.
Kanchan Yadav, Iksoo Jang, Jong Bum Lee
wiley   +1 more source

Elastic‐Wave Propagation in Chiral Metamaterials: A Couple‐Stress Theory Perspective

open access: yesAdvanced Engineering Materials, EarlyView.
The intrinsic chirality of chiral metamaterials renders an effective medium based on the classical continuum theory ineffective for predicting their acoustic activity. This limitation is addressed in the present study by employing augmented asymptotic homogenization to derive a couple‐stress‐based effective medium, enabling accurate predictions in the ...
Shahin Eskandari   +5 more
wiley   +1 more source

Rational Engineering of Nanostructured AgM (M = Au, Pt, Pd) Bimetallic Electrodes via Galvanic Replacement for Glycerol Electrolysis

open access: yesAdvanced Engineering Materials, EarlyView.
This study demonstrates the feasibility of fabricating free‐standing carbon paper electrodes by electroplating and galvanic replacement. Nanostructured AgM (M = Au, Pt, Pd) bimetallic catalysts are directly grown on the electrode substrate, which exhibit good performance for glycerol electrolysis, a sustainable approach for the co‐production of green ...
Hui Luo, Maria‐Magdalena Titirici
wiley   +1 more source

High‐Entropy Ti, Zr, Hf, Ta Multiphase Diboride with Deformation Resistance up to 2000 °C

open access: yesAdvanced Engineering Materials, EarlyView.
Ceramics are brittle and strength decreases with temperature. The multiphase high‐entropy (Ti0.25Ta0.25Hf0.25Zr0.25)B2 with heterogeneity at the nano‐ and microscale demonstrates deformation resistance up to 2000 °C, with maximum bending strength at 1800 °C.
Petre Badica   +3 more
wiley   +1 more source

A Study on Thermal Expansion and Thermomechanical Behavior of Composite Metal Foams

open access: yesAdvanced Engineering Materials, EarlyView.
The coefficient of thermal expansion of steel–steel composite metal foam (S‐S CMF) is shown to be lower than that of bulk stainless steel while its performance under compression demonstrate excellent mechanical stability and strength at all temperatures with gradualsoftening from 400 to 600 °C.
Zubin Chacko   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy