Results 241 to 250 of about 1,743,146 (385)

Bacteria‐Derived Extracellular Vesicle as A “Trojan Horse” for Selective M1 Macrophage‐Targeting in A Multi‐Cellular Entanglement Environment

open access: yesAdvanced Functional Materials, EarlyView.
The temporary transition of macrophages from a pro‐inflammatory phenotype of macrophages (M1) to an anti‐inflammatory phenotype of macrophages (M2) is crucial for tissue repair and regeneration processes. Bacterial outer membrane vesicles (OMVs) are utilized as a “trojan horse” for specific M1 macrophage‐targeting and anti‐inflammatory drug delivery ...
Donglin Cai   +9 more
wiley   +1 more source

Boosting Polysulfide Conversion on Fe‐Doped Nickel Diselenide Toward Robust Lithium–Sulfur Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This work reports an advanced functional material based on Fe‐doped nickel diselenides toward robust lithium–sulfur batteries, demonstrating that Fe‐rich cores and surface doping enhance the density of states at the Fermi level and introduce unpaired electrons for the improvement of the LiPS adsorption and catalytic conversion. Abstract Sulfur offers a
Junshan Li   +11 more
wiley   +1 more source

Piezoresponse in WO<sub>3</sub> Thin Films Enhanced by Pt-Nanoparticles as Revealed by Atom Probe Tomography and Cs-Transmission Electron Microscopy. [PDF]

open access: yesACS Omega
Pineda-Domínguez PM   +11 more
europepmc   +1 more source

Breaking the Capacity Limit for WO3 Anode‐Based Li‐Ion Batteries Using Photo‐Assisted Charging

open access: yesAdvanced Functional Materials, EarlyView.
This image illustrates a photo‐assisted rechargeable lithium‐ion battery. (a) shows the battery structure, where light enhances electron‐hole generation in the anode, boosting ion flow. (b) compares discharging performance, revealing over 60% higher capacity under light compared to dark conditions, showcasing the benefit of light‐assisted energy ...
Rabia Khatoon   +7 more
wiley   +1 more source

A Visible Light‐Responsive Hydrogel to Study the Effect of Dynamic Tissue Stiffness on Cellular Mechanosensing

open access: yesAdvanced Functional Materials, EarlyView.
A visible light‐responsive polyacrylamide‐azobenzene hydrogel enables safe, reversible stiffness control for studying cell mechanobiology without harmful UV exposure. This approach reveals stem cells respond rapidly to mechanical changes, showing altered shape and protein distribution within one hour.
Aafreen Ansari   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy