Results 211 to 220 of about 150,398 (339)

Injectable Dual‐Network Hydrogel System for Osteochondral Repair Combining Immunomodulation, Mechanical Adaptability, and Enhanced Tissue Integration

open access: yesAdvanced Functional Materials, EarlyView.
A UV‐triggered injectable dual‐network hydrogel is reported as the first application of bletilla striata polysaccharide (BSP) in osteochondral repair. By integrating methacrylamide‐modified BSP and nitrobenzaldehyde‐functionalized hyaluronic acid, the system achieves immunomodulation, mechanical reinforcement, and dynamic tissue adhesion, thereby ...
Jiaming Cui   +10 more
wiley   +1 more source

Micro and Nanostructural Diversity of Lizard Osteoderm Capping Tissue in Relation to Mechanical Performance

open access: yesAdvanced Functional Materials, EarlyView.
This study shows that lizard osteoderm capping tissue is a hyper‐mineralized hydroxyapatite layer consistently covering the superficial osteoderm surface in those species studied here, yet it varies greatly in morphology, nanostructure, and mechanical performance across species.
Adrian Rodriguez‐Palomo   +10 more
wiley   +1 more source

Axion topology in photonic crystal domain walls. [PDF]

open access: yesNat Commun
Devescovi C   +8 more
europepmc   +1 more source

Transversal

open access: yesNew Literary History, 2019
Marta Vilela   +1 more
openaire   +3 more sources

From Mechanics to Electronics: Influence of ALD Interlayers on the Multiaxial Electro‐Mechanical Behavior of Metal–Oxide Bilayers

open access: yesAdvanced Functional Materials, EarlyView.
Ultrathin AlOxHy interlayers between aluminum films and polymer substrates significantly improve electro‐mechanical properties of flexible thin film systems. By precisely controlling interlayer thickness using atomic layer deposition, this study identifies an optimal interlayer thickness of 5–10 nm that enhances ductility and delays cracking.
Johanna Byloff   +9 more
wiley   +1 more source

Exciton‐Polaritons in Nanoscale Metal‐Organic Frameworks: A Platform for the Reversible Modulation of Strong Light‐Matter Coupling via the Chemical Environment

open access: yesAdvanced Functional Materials, EarlyView.
Strong exciton‐photon coupling is achieved by integrating porphyrin ligand‐based MOF nanoparticles in optical cavities, as evidenced by pronounced polariton branch anticrossing. The porous nature of the resonator enables precise, reversible tuning via vapor pressure, unlocking unprecedented chemical‐environment controlled dynamic polaritonic platforms ...
Beatriz de Sola‐Báez   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy