Results 211 to 220 of about 511,586 (292)

NAD⁺ Reduction in Glutamatergic Neurons Induces Lipid Catabolism and Neuroinflammation in the Brain via SARM1

open access: yesAdvanced Science, EarlyView.
NAD⁺ homeostasis maintains neuronal integrity through opposing actions of NMNAT2 and SARM1. Loss of NMNAT2 in glutamatergic neurons reprograms cortical metabolism from glucose to lipid catabolism, depletes lipid stores, and triggers inflammation and neurodegeneration.
Zhen‐Xian Niou   +9 more
wiley   +1 more source

Changes in brain noradrenaline turnover in the rat exposed to stress during daytime or nighttime: Effect of reversal in light-dark cycle.

open access: diamond, 1985
Shusaku Tsujimaru   +5 more
openalex   +1 more source

Engineering Dimensional Configuration of Single‐Atom S‐Cu‐S Sites as Reversible Electron Station for Enhanced Peroxidase‐Mimicking

open access: yesAdvanced Science, EarlyView.
L‐cysteine triggers auto‐assembly of POD‐like 3D biomimetic S‐Cu‐S single‐atom nanozymes on MoS2 (MoCC). MoCC shows 16.3‐fold higher catalytic velocity and 17.9‐fold greater affinity than HRP, enabling efficient •OH generation via enhanced electron inversion and transfer.
Wenjie Ma   +12 more
wiley   +1 more source

Seipin‐Mediated Lipid Droplet Formation in Cardiomyocytes Ameliorates Cardiac Ischemia/Reperfusion Injury

open access: yesAdvanced Science, EarlyView.
Lipid droplets (LDs) protect the heart against lipotoxicity in cardiac ischemia/reperfusion (I/R) injury; however, they are insufficient to prevent cardiomyocyte death. Seipin plays a central role in the insufficient formation of LDs, subsequent lipotoxicity, and myocardial injury during cardiac I/R injury.
Changyun Liu   +13 more
wiley   +1 more source

Skeletal Muscle HSF1 Alleviates Age‐Associated Sarcopenia and Mitochondrial Function Decline via SIRT3‐PGC1α Axis

open access: yesAdvanced Science, EarlyView.
Aged HSF1 muscle‐specific knockout mice show deteriorated muscle atrophy and metabolic dysfunction, while active HSF1 overexpression improves muscle function via activating SIRT3 to deacetylate both PGC1α1 and PGC1α4, which boosts mitochondrial function and muscle hypertrophy in a fiber‐type specific manner, and induces FNDC5/Irisin for tissue ...
Jun Zhang   +18 more
wiley   +1 more source

Home - About - Disclaimer - Privacy