Results 161 to 170 of about 230,654 (298)
Fast‐acting hydrogel seals bleeding wounds as the illustrated injectable, pH‐responsive network rapidly gels in situ to stop hemorrhage, adhere strongly to wet tissue, and release antibiotics in a controlled, pH‐dependent manner. The material withstands high pressures, shows excellent biocompatibility, and degrades safely, offering a versatile platform
Arvind K. Singh Chandel +5 more
wiley +1 more source
Leveraging the numerous advantages of ammonium‐ion (NH₄⁺)—including cost‐effectiveness, low corrosiveness, preferential orientation, and rapid diffusion kinetics—aqueous NH₄⁺ batteries (AAIBs) have gained significant attention. This review highlights and evaluates the progress of AAIBs utilizing organic electrode materials such as small molecules ...
Mangmang Shi, Xiaoyan Zhang
wiley +1 more source
Thermal Processing Creates Water‐Stable PEDOT:PSS Films for Bioelectronics
Instead of using chemical cross–linkers, it is shown that PEDOT:PSS thin films for bioelectronics become water‐stable after a simple heat treatment. The heat treatment is compatible with a range of rigid and elastomeric substrates and films are stable in vivo for >20 days.
Siddharth Doshi +16 more
wiley +1 more source
Hierarchical self-assembly of simple hard polyhedra into complex mesophases. [PDF]
Subert R, Dijkstra M.
europepmc +2 more sources
Engineered Protein‐Based Ionic Conductors for Sustainable Energy Storage Applications
Rational incorporation of charged residues into an engineered, self‐assembling protein scaffold yields solid‐state protein films with outstanding ionic conductivity. Salt‐doping further enhances conductivity, an effect amplified in the engineered variants. These properties enable the material integration into an efficient supercapacitor.
Juan David Cortés‐Ossa +14 more
wiley +1 more source
Resolving the Structural Duality of Graphene Grain Boundaries
Cantilever ncAFM resolves the atomic structure of grain boundaries in graphene, revealing coexisting stable and metastable types. Both contain pentagon/heptagon defects, but metastable GBs show irregular geometries. Modeling shows metastable GBs form under compression, exhibiting vertical corrugation, while stable GBs are flat.
Haojie Guo +11 more
wiley +1 more source
Mesoporous Silica Nanoparticles in Biomedicine: Advances and Prospects
Mesoporous silica nanoparticles offer unique properties like high surface area, tunable pores, and functionalization. They excel in drug delivery, tissue engineering, and stimuli‐responsive therapies, enabling targeted and controlled treatments. With roles in cancer therapy and diagnostics, their clinical translation requires addressing challenges in ...
Miguel Manzano, María Vallet‐Regí
wiley +1 more source
Opportunities of Semiconducting Oxide Nanostructures as Advanced Luminescent Materials in Photonics
The review discusses the challenges of wide and ultrawide bandgap semiconducting oxides as a suitable material platform for photonics. They offer great versatility in terms of tuning microstructure, native defects, doping, anisotropy, and micro‐ and nano‐structuring. The review focuses on their light emission, light‐confinement in optical cavities, and
Ana Cremades +7 more
wiley +1 more source
Bottlebrush molecular architecture prevents the crystallization of high molecular weight polyethylene glycol (PEG) based polymers, enabling highly stretchable photocurable PEG hydrogels and elastomers for high‐performance conductive solvent‐free electrolytes at room temperature and for additive manufacturing of complex architectures and multi‐material ...
Baiqiang Huang +5 more
wiley +1 more source
Adaptive Twisting Metamaterials
This work introduces torque‐controlled twisting metamaterials as a transformative platform for adaptive crashworthiness. By combining multiscale predictive modeling with experimental validation on additively manufactured gyroids, it demonstrates tunable stiffness, collapse stress, and energy absorption.
Mattia Utzeri +6 more
wiley +1 more source

