Results 161 to 170 of about 182,105 (288)

Complex Oxide‐metal Hybrid Metamaterials with Integrated Magnetic and Plasmonic Non‐noble Metal Nanostructures

open access: yesAdvanced Functional Materials, EarlyView.
A new alloy‐oxide vertically aligned nanocomposite (VAN) thin film with two immiscible non‐noble metal elements of Co and Cu embedded in BaTiO3 (BTO) matrix is designed and fabricated, which presents interesting magnetic, ferroelectric, and optical properties.
Jijie Huang   +7 more
wiley   +1 more source

NanoMOF‐Based Multilevel Anti‐Counterfeiting by a Combination of Visible and Invisible Photoluminescence and Conductivity

open access: yesAdvanced Functional Materials, EarlyView.
This study presents novel anti‐counterfeiting tags with multilevel security features that utilize additional disguise features. They combine luminescent nanosized Ln‐MOFs with conductive polymers to multifunctional mixed‐matrix membranes and powder composites. The materials exhibit visible/NIR emission and matrix‐based conductivity even as black bodies.
Moritz Maxeiner   +9 more
wiley   +1 more source

Integration of Perovskite/Low‐Dimensional Material Heterostructures for Optoelectronics and Artificial Visual Systems

open access: yesAdvanced Functional Materials, EarlyView.
Heterojunctions combining halide perovskites with low‐dimensional materials enhance optoelectronic devices by enabling precise charge control and improving efficiency, stability, and speed. These synergies advance flexible electronics, wearable sensors, and neuromorphic computing, mimicking biological vision for real‐time image analysis and intelligent
Yu‐Jin Du   +11 more
wiley   +1 more source

Ultraviolet radiation exposure in cannabis-growing facilities. [PDF]

open access: yesJ Occup Environ Hyg, 2023
Chmielinski MJ   +4 more
europepmc   +1 more source

Practical Application of Ultraviolet Radiation in Purification of Naturally Contaminated Water

open access: green, 1955
H. C. RICKS   +6 more
openalex   +2 more sources

Home - About - Disclaimer - Privacy