"A New Operative Method for Exposing the Seminal Vesicles and Prostate for Extirpation"—A Reply. [PDF]
Eugene Fuller
openalex +1 more source
Artificial Receptor in Synthetic Cells Performs Transmembrane Activation of Proteolysis
Transmembrane signaling is the hallmark of living cells and is among the highest challenges for the design of synthetic cells. Herein, an artificial receptor based on the chemistry of self‐immolative linkers is used to communicate information across the lipid bilayer, for transmembrane activation of enzymatic activity. Abstract The design of artificial,
Ane Bretschneider Søgaard+7 more
wiley +1 more source
Preliminary Note on a New Chromogenic Micro-Organism Found in the Vesicles of Herpes Labialis. "Bacillus Viridans." [PDF]
Wm. St. C. Symmers
openalex +1 more source
Spatiotemporal Control Over Protein Release from Artificial Cells via a Light‐Activatable Protease
Stimulus‐responsive protein release is essential for intercellular communication. Mimicking this functionality in artificial cells is promising to study the working principles of cellular signaling. Herein, an engineered light‐activatable protease is implemented in a coacervate‐based artificial cell platform to establish user‐defined spatiotemporal ...
Arjan Hazegh Nikroo+4 more
wiley +1 more source
GENITAL TUBERCULOSIS, WITH SPECIAL REFERENCE TO THE SEMINAL VESICLES
Hugh H. Young
openalex +2 more sources
Memoirs: Contributions to the History of the Germinal Vesicle, and of the First Embryonic Nucleus [PDF]
Édouard Van Beneden
openalex +1 more source
The paper explores the creation and characterization of vesicles through biocatalytic Polymerization‐Induced Self‐Assembly (bioPISA), focusing on achieving size uniformity using centrifugation techniques. It examines the effects of stirring speed on vesicle morphology and analyses the internal polymer‐rich structure using fluorescence correlation ...
Andrea Belluati+7 more
wiley +1 more source
Light‐Triggered Protease‐Mediated Release of Actin‐Bound Cargo from Synthetic Cells
TEV Prtoease‐mediated Releasable Actin‐binding Protein (TRAP) is a protein‐based platform consisting of a cargo tightly bound to reconstituted actin networks in synthetic cells which can be proteolyticly released from the bound actin, followed by its secretion through membrane translocation mediated by a cell‐penetrating peptide.
Mousumi Akter+3 more
wiley +1 more source
Current and Future Cornea Chip Models for Advancing Ophthalmic Research and Therapeutics
This review analyzes cornea chip technology as an innovative solution to corneal blindness and tissue scarcity. The examination encompasses recent developments in biomaterial design and fabrication methods replicating corneal architecture, highlighting applications in drug screening and disease modeling while addressing key challenges in mimicking ...
Minju Kim+3 more
wiley +1 more source
The Operative Testment of Tuberculosis of the Vas Deferens and of the Seminal Vesicles [PDF]
NULL AUTHOR_ID
openalex +1 more source