Results 191 to 200 of about 498,271 (378)
Tunable Tactile Synapses Enabled by Erasable Doping in Iongel‐Gated Nanotube Network Transistors
Artificial tactile synaptic sensors are realized by an iongel‐gated single‐walled carbon nanotube (SWCNT) transistor with reversible doping characteristics. The device senses and memorizes tactile stimuli and exhibits gate bias‐dependent excitatory or inhibitory synaptic behavior.
Yan Huang+5 more
wiley +1 more source
Cell Membrane Vesicle Camouflaged Artificial Cells
Artificial cells camouflaged with a cell membrane vesicle coating are able to assemble into synthetic aggregates that exhibit rudimentary communication capabilities. Additionally, when these artificial cells are equipped with antioxidant capabilities, they are able to protect the intracellular homeostasis in HepG2 cells present in semi‐synthetic ...
Paula De Dios Andres+11 more
wiley +1 more source
Oct4‐nanoscript, a biomimetic nanoparticle‐based artificial transcription factor, precisely regulates cellular rejuvenation by activating Oct4 target genes, restoring epigenetic marks, and reducing DNA damage. In a progeria model, it effectively rescued aging‐associated pathologies and extended lifespan.
Hongwon Kim+8 more
wiley +1 more source
HDL apoA-1-mediated cholesterol efflux pathway requires multiple cellular proteins and signal transduction processes, including adenylyl cyclase (AC)/cAMP signaling. Due to the existence of multiple transmembrane AC isoforms, it was not known how many AC
Wanze Tang+6 more
doaj
Krishna Gopal+2 more
openaire +3 more sources
This review highlights recent advances in engineering artificial antigen‐presenting cells (aAPCs) as alternatives to dendritic cells for T cell expansion. Key design principles inspired by the immunological synapse are discussed, with emphasis on strategies for polyclonal and antigen‐specific T cell expansion.
Nguyen Thi Nguyen, Yu Seok Youn
wiley +1 more source
Photoreceptive Features of Vesicles associated with the Nervous System of Cephalopods [PDF]
Richard S. Nishioka+2 more
openalex +1 more source
The temporary transition of macrophages from a pro‐inflammatory phenotype of macrophages (M1) to an anti‐inflammatory phenotype of macrophages (M2) is crucial for tissue repair and regeneration processes. Bacterial outer membrane vesicles (OMVs) are utilized as a “trojan horse” for specific M1 macrophage‐targeting and anti‐inflammatory drug delivery ...
Donglin Cai+9 more
wiley +1 more source