Results 251 to 260 of about 498,271 (378)

Evidence for the vesicle hypothesis

open access: green, 1968
J. I. Hubbard, Suthiwan Kwanbunbumpen
openalex   +1 more source

Immunosuppressive Formulations for Immunological Defense against Traumatic Brain Injury

open access: yesAdvanced Healthcare Materials, EarlyView.
A novel subcutaneous formulation combining alpha‐ketoglutarate, glycolysis inhibitor PFK15, and a myelin peptide reduces inflammation in a mouse TBI model. This formulation promotes regulatory immune cells, enhances autophagy, and improves motor function, suggesting its potential as a prophylactic immunosuppressive therapy to mitigate TBI‐induced ...
Kelly Lintecum   +28 more
wiley   +1 more source

High‐Resolution Patterned Delivery of Chemical Signals From 3D‐Printed Picoliter Droplet Networks

open access: yesAdvanced Materials, EarlyView.
3D‐printed picoliter droplet networks have been fabricated that control gene expression in bacterial populations by releasing chemical signals with precise spatial definition and high temporal resolution. This system of effector release is widely applicable, offering diverse applications in biology and medicine.
Jorin Riexinger   +7 more
wiley   +1 more source

Engineering CAR‐T Therapeutics for Enhanced Solid Tumor Targeting

open access: yesAdvanced Materials, EarlyView.
CART cell therapy has proven effective for blood cancers but struggles with solid tumors due to diverse antigens and complex environments. Recent efforts focus on improving CAR design and validation platforms. Advances in protein engineering, machine learning, and organoid systems aim to enhance CAR‐T therapy against solid tumors.
Danqing Zhu   +4 more
wiley   +1 more source

Preoperative Predictive Factors for Seminal Vesicle Invasion (pT3b) in Robotic-assisted Radical Prostatectomy. [PDF]

open access: yesCancer Diagn Progn
Oshinomi K   +11 more
europepmc   +1 more source

Engineering Magnetotactic Bacteria as Medical Microrobots

open access: yesAdvanced Materials, EarlyView.
Magnetotactic bacteria (MTB) are living microorganisms that produce magnetosomes for navigation using the Earth's geomagnetic field. Their built‐in magnetic components, along with their intrinsic and/or modified biological functions, make them one of the most promising platforms for making future living and programmable microrobots.
Jiaqi Wang   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy