Results 241 to 250 of about 1,940,966 (390)

Adenosine A3 receptor antagonists as anti‐tumor treatment in human prostate cancer: an in vitro study

open access: yesFEBS Open Bio, EarlyView.
The A3 adenosine receptors (A3ARs) are overexpressed in prostate cancer. AR 292 and AR 357, as A3AR antagonists, are capable of blocking proliferation, modulating the expression of drug transporter genes involved in chemoresistance, ferroptosis, and the hypoxia response, and inducing cell death.
Maria Beatrice Morelli   +15 more
wiley   +1 more source

Downregulation of O‐GlcNAcylation enhances etoposide‐induced p53‐mediated apoptosis in HepG2 human liver cancer cells

open access: yesFEBS Open Bio, EarlyView.
Etoposide, a topoisomerase II inhibitor, reduces O‐GlcNAcylation in HepG2 liver cancer cells. Further inhibition of O‐GlcNAc transferase by OSMI‐1 enhanced etoposide‐induced apoptosis, lowering the IC50 for viability and increasing the EC50 for cytotoxicity.
Jaehoon Lee   +5 more
wiley   +1 more source

Preparation of Fecal Microbiota Transplantation Products for Companion Animals. [PDF]

open access: yesPLoS One
Randolph NK   +5 more
europepmc   +1 more source

KCS1 and VIP1, the genes encoding yeast phosphoinositol pyrophosphate synthases, are required for Ca2+‐mediated response to dimethylsulfoxide (DMSO)

open access: yesFEBS Open Bio, EarlyView.
Ca2+‐mediated response to DMSO was investigated in Saccharomyces cerevisiae cells expressing Ca2+‐dependent aequorin. Cell exposure to DMSO induced a cytosolic Ca2+ wave dependent on the integrity of the Cch1/Mid1 channel. Deletion of KCS1 or VIP1 genes encoding the phosphoinositol pyrophosphate (PP‐IP) synthases suppressed the DMSO‐induced Ca2 ...
Larisa Ioana Gogianu   +4 more
wiley   +1 more source

Protein O‐glycosylation in the Bacteroidota phylum

open access: yesFEBS Open Bio, EarlyView.
Species of the Bacteroidota phylum exhibit a unique O‐glycosylation system. It modifies noncytoplasmic proteins on a specific amino acid motif with a shared glycan core but a species‐specific outer glycan. A locus of multiple glycosyltransferases responsible for the synthesis of the outer glycan has been identified.
Lonneke Hoffmanns   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy