Results 161 to 170 of about 165,879 (285)

Carbon Contacts to Proteins Enable Robust, Biocompatible Electronic Junctions with Near‐Activation‐less Conduction Down to 10 K

open access: yesAdvanced Functional Materials, EarlyView.
A robust solid‐state protein junction with a semi‐transparent eC/Au electrode allows photoexcitation of the bacterio‐rhodopsin, bR layer, to isomerize the bR retinal. The resulting photo‐response shows the protein is functional in the solid‐state junction.
Shailendra K. Saxena   +5 more
wiley   +1 more source

Self‐Powered Permeable Electronic Dressing for Exudate Management, Electrostimulation and Drug Delivery in Chronic Wound Healing

open access: yesAdvanced Functional Materials, EarlyView.
This study develops a self‐powered permeable electronic dressing (SPED) that synergistically integrates exudate management, electrical stimulation, and on‐demand drug delivery. The dressing effectively absorbs exudate while demonstrating potent antibacterial activity and accelerated tissue regeneration in diabetic mouse models, thereby promoting ...
Jiaheng Liang   +12 more
wiley   +1 more source

Laser Engineering of HfN‐Based Nanoparticles for Safe NIR‐I Photothermal and X‐ray Enhancing Cancer Therapies

open access: yesAdvanced Functional Materials, EarlyView.
In this study, we produced HfN‐based nanoparticles via femtosecond laser ablation in acetone. The nanoparticles exhibit a red‐shifted plasmonic resonance in the NIR‐I window, colloidal stability after coating with polyethyleneglycol, and excellent biocompatibility. The photothermal and X‐ray sensitization therapeutic effects were demonstrated for tumor
Julia S. Babkova   +15 more
wiley   +1 more source

Molecularly Engineered Highly Stable Memristors with Ultra‐Low Operational Voltage: Integrating Synthetic DNA with Quasi‐2D Perovskites

open access: yesAdvanced Functional Materials, EarlyView.
Molecularly engineered memristors integrating Ag nanoparticle–embedded synthetic DNA with quasi‐2D halide perovskites enable ultra‐low‐operational voltage, forming‐free resistive switching, and record‐low power density. This synergistic integration of customized DNA and 2D OHP in bio‐hybrid architecture enhances charge transport, reduces variability ...
Kavya S. Keremane   +9 more
wiley   +1 more source

The Cuttlebone Blueprint for Multifunctional Metamaterials: Design Taxonomy, Functional Decoupling, and Future Horizons

open access: yesAdvanced Functional Materials, EarlyView.
Cuttlebone‐inspired metamaterials exploit a septum‐wall architecture to achieve excellent mechanical and functional properties. This review classifies existing designs into direct biomimetic, honeycomb‐type, and strut‐type architectures, summarizes governing design principles, and presents a decoupled design framework for interpreting multiphysical ...
Xinwei Li, Zhendong Li
wiley   +1 more source

Home - About - Disclaimer - Privacy