Results 281 to 290 of about 1,309,431 (344)
The separation of Helium gas from natural gas is challenging but highly important. MIL‐116(Ga), a “non‐porous” metal–organic framework is used as a molecular sieve to separate He from CH4. Druse‐like MIL‐116(Ga) particles are integrated into polysulfone mixed matrix membranes.
Ayisha Komal+10 more
wiley +1 more source
Feasibility of simple machine learning approaches to support detection of non-glaucomatous visual fields in future automated glaucoma clinics. [PDF]
Thomas PBM+4 more
europepmc +1 more source
This review explores Zn anode challenges in aqueous ZIBs, including dendrites, corrosion, and side reactions, and discusses strategies for improvement through Zn anode, electrolyte, and separator modifications to enhance stability and efficiency. Abstract Aqueous rechargeable zinc‐ion batteries (ZIBs) are emerging as promising candidates for next ...
Pragati A. Shinde+5 more
wiley +1 more source
Novel ferrocene derivatives (e.g., FcPhc2) are used as an ultrathin layer hole‐blocking layer, reducing hole injection from the Ag contact. This results in an ultralow noise spectral density of 1.2 × 10−14 A Hz−1/2, and a high specific detectivity of 8.1 × 1012 Jones at −0.5 V.
Eunyoung Hong+16 more
wiley +1 more source
This work presents π–conjugated polymers based on dihydropyrazine (DHP) and ethylenedioxythiophene (EDOT), developed to produce highly conductive, flexible films for printed electronics. By optimizing the DHP and EDOT ratio, strong and compact π–π stacking is achieved, resulting in polymer films with conductivities up to 1700 S cm−1 under ambient ...
Sung Jae Jeon+3 more
wiley +1 more source
Spin‐Selective Anisotropic Magnetoresistance Driven by Chirality in DNA
It is shown that magnetoresistance (MR) measurements carried out as a function of angular dependence between the magnetic field and a chiral (DNA) interface provide a valuable new insight into the charge transport mechanism associated with the chiral‐induced spin selectivity (CISS) effect.
Tapan Kumar Das+4 more
wiley +1 more source
Optical Control of the Thermal Conductivity in BaTiO3
Light‐driven manipulation of thermal conductivity in archetypal ferroelectric, BaTiO3, offers a novel and effective approach for the dynamical control of the heat flux, with potential applications in thermal management and phonon‐based logic. Abstract Achieving dynamic control over thermal conductivity remains a formidable challenge in condensed matter
Claudio Cazorla+4 more
wiley +1 more source