Results 191 to 200 of about 194,442 (307)
Rationally Designed Carbon Nanomaterials for Electrically Driven Solid‐State Hydrogen Storage
A bottom‐up design principle integrating atomic‐level and nanoscale structural engineering is developed to guide the rational design of electrically tunable, solid‐state hydrogen storage materials that enable non‐dissociative chemisorption under applied electric fields.
Yong Gao +30 more
wiley +1 more source
Electric control of magnetic tunnel junctions offers a path to drastically reduce the energy requirements of the device. Electric field control of magnetization can be realized in a multitude of ways. These mechanisms can be integrated into existing spintronic devices to further reduce the operational energy.
Will Echtenkamp +7 more
wiley +1 more source
This study demonstrates that cholesterol in messenger RNA‐lipid nanoparticles (mRNA‐LNPs) can be completely replaced with an immunopotentiating lipid, i.e., a synthetic analogue of the C‐type lectin receptor agonist monomycoloyl glycerol (MMG‐1), without compromising physicochemical properties, in vivo transfection efficiency, and immunogenicity of the
Abhijeet G. Lokras +19 more
wiley +1 more source
Relative timescale of channel voltage dependence and channel density regulation impacts assembly and recovery of activity. [PDF]
Mondal Y, Calabrese RL, Marder E.
europepmc +1 more source
This work reports the self‐assembly of a pyrene derivative into two distinct nanostructures and their application in visible‐light photocatalysis. The two nanostructures exhibit completely different yet complementary photocatalytic activities, promoting either H2 or H2O2 evolution.
Marianna Barbieri +6 more
wiley +1 more source
ROS-induced voltage-gated ion channel expression and electrophysiological remodeling in malignant human cells. [PDF]
Mohammadiaria M.
europepmc +1 more source
Evaluation of voltage-dependent calcium channel γ gene families identified several novel potential susceptible genes to schizophrenia. [PDF]
Guan F +7 more
europepmc +1 more source
Transducer Materials Mediated Deep Brain Stimulation in Neurological Disorders
This review discusses advanced transducer materials for improving deep brain stimulation (DBS) in neurological disorders. These materials respond to light, ultrasound, or magnetic fields, enabling precise, less invasive neuromodulation. Their stimulus‐responsive properties enhance neural control and adaptive therapy, paving the way for next‐generation ...
Di Zhao +5 more
wiley +1 more source

