Results 71 to 80 of about 5,140,777 (272)
A survey on geometry of warped product submanifolds [PDF]
The warped product $N_1\times_f N_2$ of two Riemannian manifolds $(N_1,g_1)$ and $(N_2,g_2)$ is the product manifold $N_1\times N_2$ equipped with the warped product metric $g=g_1+f^2 g_2$, where $f$ is a positive function on $N_1$. The notion of warped product manifolds is one of the most fruitful generalizations of Riemannian products.
Bang‐Yen Chen
openalex +3 more sources
On quasi-Einstein warped products
We study quasi-Einstein warped product manifolds for arbitrary dimen- sion n 3. Mathematics Subject Classication 2010: 53C25.
Sular, Sibel, Özgür, Cihan
openaire +4 more sources
A Bernstein problem in warped products [PDF]
Uniqueness and non-existence of entire solutions to the minimal surface equation in warped products R 2 ×f R are provided. As a consequence of our results, the classical Bernstein's Theorem is extended.
Juan A. Aledo, Rafael M. Rubio
openaire +2 more sources
Conformal Warped Product Submersion [PDF]
In this paper, the concept of Riemannian warped product submersion is generalized to the conformal case. We introduce the notion of conformal warped product submersion. It is a submersion between warped product manifolds that preserves angles between the horizontal vectors.
arxiv
AbstractIn this paper we study geodesic completeness of Riemannian doubly warped products and Lorentzian doubly warped products. We give necessary conditions for generalized Robertson–Walker space-times with doubly warped product spacial parts to be globally hyperbolic.
openaire +2 more sources
Asymptotic Dirichlet problems in warped products [PDF]
We study the asymptotic Dirichlet problem for Killing graphs with prescribed mean curvature $H$ in warped product manifolds $M\times_\varrho \mathbb{R}$. In the first part of the paper, we prove the existence of Killing graphs with prescribed boundary on geodesic balls under suitable assumptions on $H$ and the mean curvature of the Killing cylinders ...
Casteras, Jean-Baptiste+3 more
openaire +6 more sources
Certain investigations of sequential warped product submanifolds on cosymplectic manifolds
In a special class of almost contact metric manifolds known as cosymplectic manifolds, the current study aims to establish the existence result and a few inequalities for sequential warped product submanifolds.
Anil Sharma+3 more
doaj +1 more source
THE EXISTENCE OF WARPING FUNCTIONS ON RIEMANNIAN WARPED PRODUCT MANIFOLDS [PDF]
In this paper, when N is a compact Riemannian manifold of class (C), we consider the nonexistence of some warping functions on Riemannian warped product manifolds with prescribed scalar curvatures.
Yoon-Tae Jung+4 more
openaire +2 more sources
Some Conformal Transformations on Finsler Warped Product Manifolds
The conformal transformation, which preserves Einstein metrics on Finsler warped product manifolds, is studied in this paper. We obtain sufficient and necessary conditions of a conformal transformation preserving Einstein metrics. In addition, we provide
Yuze Ren, Xiaoling Zhang, Lili Zhao
doaj +1 more source
A Note on Doubly Warped Product Contact CR-Submanifolds in trans-Sasakian Manifolds
Warped product CR-submanifolds in Kaehlerian manifolds were intensively studied only since 2001 after the impulse given by B.Y. Chen. Immediately after, another line of research, similar to that concerning Sasakian geometry as the odd dimensional version
A. Gray+10 more
core +2 more sources