Results 211 to 220 of about 6,377,360 (326)

Scalable Thermal Engineering via Femtosecond Laser‐Direct‐Written Phononic Nanostructures

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that femtosecond laser‐induced periodic surface structures (fs‐LIPSS) can function as phononic metasurfaces, reducing thermal conductivity below the plain thin‐film limit. Phonon Monte Carlo analysis reveals that the periodic structures restrict phonon mean free paths.
Hiroki Hamma   +4 more
wiley   +1 more source

Micro and Nanostructural Diversity of Lizard Osteoderm Capping Tissue in Relation to Mechanical Performance

open access: yesAdvanced Functional Materials, EarlyView.
This study shows that lizard osteoderm capping tissue is a hyper‐mineralized hydroxyapatite layer consistently covering the superficial osteoderm surface in those species studied here, yet it varies greatly in morphology, nanostructure, and mechanical performance across species.
Adrian Rodriguez‐Palomo   +10 more
wiley   +1 more source

Multipurpose Transparent Nanocomposites for Gamma Spectroscopy, Pulse Shape Discrimination, Thermal Neutron Detection, Radiation Shielding, and High Refractive Index Applications

open access: yesAdvanced Functional Materials, EarlyView.
Materials exist that are useful for gamma scintillation, radiation shielding, neutron‐gamma pulse shape discrimination (PSD), thermal neutron detection, or high refractive index applications. While certain materials have exhibited optimal performance for each of these applications, none achieve multiple functions.
Isabelle Winardi   +13 more
wiley   +1 more source

Mimicking Block Copolymer Self‐Assembly with One‐Pot Synthesized Polyphosphoester Gradient Copolymers

open access: yesAdvanced Functional Materials, EarlyView.
Degradable Polyphosphoester (PPE) gradient copolymers (GCPs) are synthesized via one‐pot copolymerization. We show that GCPs self‐assemble into nanostructures like polymersomes, effectively mimicking the behavior of traditional BCPs. The gradient strength is key, with softer gradients favoring micelles.
Suna Azhdari   +7 more
wiley   +1 more source

Fluorine‐Free Soft Nanocomposites for High‐Speed Liquid Impact Repellence

open access: yesAdvanced Functional Materials, EarlyView.
Fluorine‐free soft nanocomposite coatings are developed using silicone oil‐mediated mechanical‐stiffness control, enabling ‘dry’ liquid‐repellent surfaces that resist high‐speed water jet impacts up to ∼60 m/s. By tuning nanoparticle loading and oil content, the coatings also achieve >90% optical transparency, amphiphobicity with impact resistance to ...
Priya Mandal   +4 more
wiley   +1 more source

Conductive Bonding and System Architectures for High‐Performance Flexible Electronics

open access: yesAdvanced Functional Materials, EarlyView.
This review outlines bonding technologies and structural design strategies that support high‐performance flexible and stretchable electronics. Bonding approaches such as surface‐activated bonding and anisotropic conductive films, together with system‐level architectures including buffer layers and island‐bridge structures, possess distinct mechanical ...
Kazuma Nakajima, Kenjiro Fukuda
wiley   +1 more source

Association between domestic water hardness, chlorine, and atopic dermatitis risk in early life: A population-based cross-sectional study.

open access: yesJournal of Allergy and Clinical Immunology, 2016
M. Perkin   +35 more
semanticscholar   +1 more source

MAGTWIST: A Magnetically‐Driven Rotary Actuator Using a Traveling‐Wave With Integrated Stiffness Tunability

open access: yesAdvanced Functional Materials, EarlyView.
MAGTWIST: A compact magnetic rotary actuator, enabling smooth, stepless rotation, and on‐demand locking. Inspired by peristalsis, a soft polymer belt generates a traveling‐wave, enabling 270° rotation when heated. Cooling stiffens the belt, locking it in position and enabling it to withstand high loads.
Simon Frieler   +3 more
wiley   +1 more source

Hard water soap

open access: yesFocus on Surfactants, 2006
openaire   +1 more source

Home - About - Disclaimer - Privacy