Results 141 to 150 of about 70,959 (315)

Robust and Reversible Thermofluorescence in Solvent‐Free Thermoplastic Polyurethane Composites

open access: yesAdvanced Functional Materials, EarlyView.
Thermofluorescent polymer composites with high‐contrast optical outputs are prepared by solvent‐free blending of indenoquinacridone dye into a thermoplastic polyurethane matrix. The temperature‐dependent fluorescence originates from aggregation–dissociation of the dye molecules, regulated by competing hydrogen bonds from the polymer matrix.
Guanghua Yu   +8 more
wiley   +1 more source

Tool Wear Mechanism in Cutting of Stack CFRP/UNS A97075. [PDF]

open access: yesMaterials (Basel), 2018
Fernandez-Vidal SR   +3 more
europepmc   +1 more source

2205 The wear mechanism of aligned carbon nanotube film produced by surface decomposition of silicon carbide

open access: bronze, 2007
Yosuke TSUKIYAMA   +4 more
openalex   +2 more sources

Viscoelasticity‐Induced Controllable Periodic Meso‐Textures of Liquid Crystal Polymers in Additive Manufacturing

open access: yesAdvanced Functional Materials, EarlyView.
Viscoelasticity‐driven instabilities are harnessed to create tunable, periodic textures in 3D‐printed liquid crystalline polymers. This study illustrates how processing parameters control these spontaneous meso‐scale patterns. These unique structural architectures unlock new possibilities for functional devices, ranging from photonic components to ...
Miaomiao Zou   +17 more
wiley   +1 more source

A Biologically‐Architected Wear and Damage‐Resistant Nanoparticle Coating From the Radular Teeth of Cryptochiton stelleri

open access: yesAdvanced Functional Materials, EarlyView.
The ultrahard teeth of mollusks that feed on rocky substrates contain a wear‐resistant coating on their surfaces consisting of densely packed mesocrystalline magnetic nanoparticles within an organic matrix. These coatings display significant hardness and toughness through their highly controlled mesocrystalline architectures.
Taifeng Wang   +7 more
wiley   +1 more source

Living Liquid Metal Composites Embedded with Electrogenic Endospores for Next‐Generation Bioelectronics

open access: yesAdvanced Functional Materials, EarlyView.
A new class of living liquid metal composites is introduced, embedding Bacillus subtilis endospores into eutectic gallium–indium (EGaIn). The spores enhance droplet coalescence, strengthen interfacial conductivity, and provide on‐demand electrogenic functionality after germination. The composites exhibit high conductivity, self‐healing, patternability,
Maryam Rezaie, Yang Gao, Seokheun Choi
wiley   +1 more source

Home - About - Disclaimer - Privacy