Results 111 to 120 of about 1,170,509 (350)

Decrypting cancer's spatial code: from single cells to tissue niches

open access: yesMolecular Oncology, EarlyView.
Spatial transcriptomics maps gene activity across tissues, offering powerful insights into how cancer cells are organised, switch states and interact with their surroundings. This review outlines emerging computational, artificial intelligence (AI) and geospatial approaches to define cell states, uncover tumour niches and integrate spatial data with ...
Cenk Celik   +4 more
wiley   +1 more source

High-coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios

open access: yesCell, 2021
M. Byrska-Bishop   +20 more
semanticscholar   +1 more source

Characterizing the salivary RNA landscape to identify potential diagnostic, prognostic, and follow‐up biomarkers for breast cancer

open access: yesMolecular Oncology, EarlyView.
This study explores salivary RNA for breast cancer (BC) diagnosis, prognosis, and follow‐up. High‐throughput RNA sequencing identified distinct salivary RNA signatures, including novel transcripts, that differentiate BC from healthy controls, characterize histological and molecular subtypes, and indicate lymph node involvement.
Nicholas Rajan   +9 more
wiley   +1 more source

Bridging the gap: Multi‐stakeholder perspectives of molecular diagnostics in oncology

open access: yesMolecular Oncology, EarlyView.
Although molecular diagnostics is transforming cancer care, implementing novel technologies remains challenging. This study identifies unmet needs and technology requirements through a two‐step stakeholder involvement. Liquid biopsies for monitoring applications and predictive biomarker testing emerge as key unmet needs. Technology requirements vary by
Jorine Arnouts   +8 more
wiley   +1 more source

Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature

open access: yesGenetics in Medicine, 2018
We conducted a systematic literature review to summarize the current health economic evidence for whole-exome sequencing (WES) and whole-genome sequencing (WGS).
MA Katharina Schwarze BSc   +3 more
semanticscholar   +1 more source

Tumor‐agnostic detection of circulating tumor DNA in patients with advanced pancreatic cancer using targeted DNA methylation sequencing and cell‐free DNA fragmentomics

open access: yesMolecular Oncology, EarlyView.
We evaluated circulating tumor DNA (ctDNA) detection in advanced pancreatic cancer using DNA methylation, cell‐free DNA fragment lengths, and 5′ end motifs. Machine learning models were trained to estimate ctDNA levels from each feature and their combination.
Morten Lapin   +10 more
wiley   +1 more source

Whole genome sequencing of hematologically stained cells catapulted from Cell smears [PDF]

open access: green, 2022
Sang-Wook Bae   +6 more
openalex   +1 more source

Development and performance of a targeted whole exome sequencing enrichment kit for the dog (Canis Familiaris Build 3.1) [PDF]

open access: yes, 2014
Whole exome sequencing is a technique that aims to selectively sequence all exons of protein-coding genes. A canine whole exome sequencing enrichment kit was designed based on the latest canine reference genome (build 3.1.72).
Bavegems, Valérie   +7 more
core   +2 more sources

A bioinformatics screen identifies TCF19 as an aggressiveness‐sustaining gene in prostate cancer

open access: yesMolecular Oncology, EarlyView.
Gene expression meta‐analysis in multiple prostate cancer patient cohorts identifies Transcription factor 19 (TCF19) as an aggressiveness‐sustaining gene with prognostic potential. TCF19 is a gene repressed by androgen signaling that sustains core cancer‐related processes such as vascular permeability or tumor growth and metastasis.
Amaia Ercilla   +15 more
wiley   +1 more source

Home - About - Disclaimer - Privacy