Results 311 to 320 of about 3,942,784 (376)
From Nature to Engineering: Mortar Volume and Interfacial Mechanics in Bioinspired Ceramics
Inspired by natural armors like nacre, this study explores how varying the volume fraction of the soft mortar layer impacts the interfacial strength and toughness of bioinspired ceramics. Experimental and computational analysis reveals that higher mortar volumes increase energy dissipation but reduce interfacial stiffness, offering insights for ...
Ehsan Azad+4 more
wiley +1 more source
Additive manufacturing technologies like laser powder‐bed fusion offer great design freedom and individualization of products down to a batch size of one. However, parts fabricated with this technology suffer from poor quality. Acoustic assistance during the build process can minimize these drawbacks.
Oliver Maurer, Dirk Bähre
wiley +1 more source
This study presents a 3D representative volume element‐based simulation approach to predict mesoscopic residual stress and strain fields in silicon solid solution‐strengthened ductile cast iron. By modeling phase transformation kinetics with an enhanced Johnson–Mehl–Avrami–Kolmogorov model, the effects of varying cooling rates on residual stresses are ...
Lutz Horbach+6 more
wiley +1 more source
Short-term wind speed prediction based on improved Hilbert-Huang transform method coupled with NAR dynamic neural network model. [PDF]
Chen J, Guo Z, Zhang L, Zhang S.
europepmc +1 more source
A new experimental setup, incorporating digital image correlation and infrared thermography in combination with inductive‐conductive heating for precise temperature control, is used to analyze the mechanical behavior and microstructural changes of sheet metal under complex thermomechanical test conditions that represent quench and partitioning ...
Christian Illgen+4 more
wiley +1 more source
A multimaterial approach is introduced to improve upon auxetic structures by combining two different polymers into the same reentrant honeycomb structure via additive manufacturing. The deformation behavior as well as the resulting Poisson's ratio are thereby improved significantly.
Alexander Engel+2 more
wiley +1 more source
Vacuum‐Formed Composites Based on a Polyolefin and a High Content of Biomass‐Waste Fillers
It is shown here that by the use of a very ductile polymer matrix, it is possible to vacuum‐form products that contain up to 25% of hard biofillers with still ductile properties. The results are promising and opens up for the use of engineered biocomposites derived from industrial side‐stream biofillers in vacuum‐formed products. A strategy to increase
Susanna K. Källbom+6 more
wiley +1 more source
Residual Stress States in Microstructurally Graded PBF–LB/M Austenitic Steel Components
This study examines microstructurally graded 316L rectangular tube profiles fabricated via PBF–LB/M using a dual‐laser system. A 1 kW top‐hat and a 400 W Gaussian laser create distinct grain sizes and crystallographic texture. Mechanical properties are linked to microstructural evolution driven by processing conditions.
Nico Möller+5 more
wiley +1 more source
When realized as inserts in high‐pressure die casting, aluminum cooling channels for electric powertrain components and similar applications typically require a stabilizing filler to survive the process. The present study investigates relinquishing this filler using additively manufactured inserts promising performance improvements.
Dirk Lehmhus+9 more
wiley +1 more source
Optimizing Waste Heat Conversion: Integrating Phase-Change Material Heatsinks and Wind Speed Dynamics to Enhance Flexible Thermoelectric Generator Efficiency. [PDF]
Egypt P+4 more
europepmc +1 more source