Results 231 to 240 of about 230,443 (339)

Switchable Supramolecular Adhesive by Tuning Interfacial Bonding and Modulus

open access: yesAdvanced Functional Materials, EarlyView.
The supramolecular adhesive (HyDiP) shows reversible adhesion and recyclability. In the dehydrated state, it is dense, stiff (E ≈445 MPa), transparent, and provides strong bonding with adhesion strengths up to 4.65 MPa. In the hydrated state, it becomes porous, soft (E ≈0.11 MPa), and detaches easily, enabling sustainable high‐strength applications ...
Rumin Fu   +10 more
wiley   +1 more source

Comparative Wood Anatomy of the Primuloid Clade (Ericales s.l.)

open access: green, 2005
Frederic Lens   +4 more
openalex   +1 more source

Rational Design of Printable Carbon Nanotube Transparent Conductive Films via Data‐Driven and Mechanistic Insights

open access: yesAdvanced Functional Materials, EarlyView.
A machine learning and simulation‐guided strategy is demonstrated for gentle, non‐sonication dispersion of carbon nanotubes, preserving structural integrity and performance. This approach enables transparent conductive films with low sheet resistance, high transmittance, and sub‐20 µm printability.
Ying Zhou   +7 more
wiley   +1 more source

Photothermal Macroporous Lignin Cryogels for Off‐Grid, Continuous Atmospheric Water Collection via Interlayer Heat Recovery

open access: yesAdvanced Functional Materials, EarlyView.
Photothermal, macroporous lignin‐based cryogels are engineered to convert sunlight into low‐grade heat. Integrated as stacked beds in a drum‐type device, a thin copper interlayer transfers waste heat between beds, enabling interlayer heat recovery and continuous solar cycling.
Jie Yan   +8 more
wiley   +1 more source

PRELIVE: A Framework for Predicting Lipid Nanoparticles In Vivo Efficacy and Reducing Reliance on Animal Testing

open access: yesAdvanced Functional Materials, EarlyView.
PREdicting LNP In Vivo Efficacy (PRELIVE) framework enables the prediction of lipid nanoparticle (LNPs) organ‐specific delivery through dual modeling approaches. Composition‐based models using formulation parameters and protein corona‐based models using biological fingerprints both achieve high predictive accuracy across multiple organs.
Belal I. Hanafy   +3 more
wiley   +1 more source

Designing Asymmetric Memristive Behavior in Proton Mixed Conductors for Neuromorphic Applications

open access: yesAdvanced Functional Materials, EarlyView.
Protonic devices that couple ionic and electronic transport are demonstrated as bioinspired neuromorphic elements. The devices exhibit rubber‐like asymmetric memristive behavior with slow voltage‐driven conductance increase and rapid relaxation, enabling simplified read–write operation.
Nada H. A. Besisa   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy