Results 141 to 150 of about 1,914,697 (336)

Growth, structure, and performance of depth-graded W/Si multilayers for hard x-ray optics [PDF]

open access: green, 2000
David L. Windt   +7 more
openalex   +1 more source

Performance Comparison of Surface Sensitizers for Diode Laser Powder Bed Fusion of Polyamide 12

open access: yesAdvanced Engineering Materials, EarlyView.
Laser‐generated nanoparticles transform standard PA12 powders into high‐performance, dye‐free feedstocks for diode laser 3D printing. Despite identical absorbance at 808 nm, CuS, LaB6, and CB coatings reveal striking differences in fusion and strength—unlocking new design space for recyclable, industrial‐grade polymers.
Michael Willeke   +9 more
wiley   +1 more source

Optimized Strategy for Fabricating High‐Aspect‐Ratio Periodic Structures Over Large Areas Using ps‐Direct Laser Interference Patterning

open access: yesAdvanced Engineering Materials, EarlyView.
Picosecond direct laser interference patterning (DLIP) enables precise microstructure fabrication on stainless steel. Using a multiscan approach, high‐aspect‐ratio patterns are achieved. Fluence influences structure growth and homogeneity, with smaller periods yielding better uniformity.
Fabian Ränke   +5 more
wiley   +1 more source

Multilayer optics for hard x-ray astronomy [PDF]

open access: green, 2000
Suzanne Romaine   +6 more
openalex   +1 more source

Sol–Gel Synthesis of Ca2.5Ag0.3Sm0.2Co4O9 Semiconducting Materials for Thermoelectric Applications in Aerospace Systems

open access: yesAdvanced Engineering Materials, EarlyView.
Ca2.5Ag0.3Sm0.2Co4O9 semiconductor materials are synthesized and produced in this study using the sol–gel and cold pressing techniques for thermoelectric generator applications. As template samples are added, the Seebeck coefficient and power factor values rise, peaking at 800 °C for Ca2.5Ag0.3Sm0.2Co4O9 at 274.47 μV K−1 and 0.58 mW mK−2, respectively.
Enes Kilinc   +4 more
wiley   +1 more source

X-ray optics for advanced ultrafast pump-probe X-ray experiments at SACLA. [PDF]

open access: yesJ Synchrotron Radiat, 2019
Katayama T   +7 more
europepmc   +1 more source

Titanium‐S23: A New Alloy with Ultra‐High Tensile Toughness Directly from the Solid‐State Processing of Recycled Ti–6Al–4V and Ti–5Al–5Mo–5V–3Cr Powders using Field Assisted Sintering Technology

open access: yesAdvanced Engineering Materials, EarlyView.
This study explores combining two existing aerospace titanium alloy powders, processing them via field‐assisted sintering technology and the subsequent discovery of a novel alloy composition, termed S23, with ultra‐high tensile toughness. Fine‐scale alpha precipitates favorably form in the alloy despite the relatively slow cooling, providing an ...
Samuel Lister   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy