Results 151 to 160 of about 91,735 (266)
Abstract Aim Tacrolimus dosing in the early post‐kidney transplant period is challenging due to a narrow therapeutic index and substantial interindividual pharmacokinetic (PK) variability. This study aimed to develop and validate mechanism‐informed machine learning (ML) models to support individualized tacrolimus dosing during this critical period ...
Hui Yu +4 more
wiley +1 more source
Optimized ML framework for predicting RP and Dj phases in perovskite solar cells. ABSTRACT Two‐dimensional (2D) lead halide perovskites (LHPs) have captured a range of interest for the advancement of state‐of‐the‐art optoelectronic devices, highly efficient solar cells, next‐generation energy harvesting technologies owing to their hydrophobic nature ...
Basir Akbar, Kil To Chong, Hilal Tayara
wiley +1 more source
Tree Boosting With XGBoost - Why Does XGBoost Win "Every" Machine Learning Competition?
Tree boosting has empirically proven to be a highly effective approach to predictive modeling. It has shown remarkable results for a vast array of problems. For many years, MART has been the tree boosting method of choice. More recently, a tree boosting method known as XGBoost has gained popularity by winning numerous machine learning competitions.
openaire +1 more source
Phishing URL Detection Using XGBoost
Abstract: Phishing attacks are a major threat to cybersecurity, affecting individuals and organizations around the world. In this project we are developing a phishing site detection system using XGBoost, a widely used machine learning algorithm that is well-known for its effectiveness and precision in classification tasks.
openaire +1 more source
Abstract Artificial intelligence and automation are no longer just buzzwords in the biopharmaceutical industry. The manufacturing of a class of biologics, comprising monoclonal antibodies, cell therapies, and gene therapies, is far more complex than that of traditional small molecule drugs.
Shyam Panjwani, Hao Wei, John Mason
wiley +1 more source
Data-Driven Techniques for Identifying Factors Affecting the Severity of Driver Injuries in Highway-Railway Grade Crossing Accidents: A Comparative Analysis Using Random Forest, XGBoost,and Multinomial Logistic Regression [PDF]
This study investigates the factors influencing the severity of accidents at highway-rail grade crossings in the United States and explores strategies to mitigate the risks to road vehicle drivers.
Rayehe sadat Mousavi +5 more
doaj
Drug Response Prediction Using XGBOOST
Abstract: An essential issue in computational personalised medicine is the prediction of drug responses. There have been several proposals for approaches to this problem that rely on machine learning, particularly deep learning. Nevertheless, these approaches often portray the medications as strings, an implausible representation of molecules ...
openaire +1 more source
Computational and Machine‐Learning Studies of Ethylene Oligomerization
This review focuses on recent advances in computational and machine‐learning studies of ethylene oligomerization, highlighting mainstream catalyst systems based on Co, Ta, Ti, Zr, and Hf, with particular emphasis on Fe‐ and Cr‐based catalysts and their controlling factors governing reactivity and LAO distribution.
Zhixin Qin +3 more
wiley +1 more source
Ensemble‐based soil liquefaction assessment: Leveraging CPT data for enhanced predictions
Abstract This study focuses on predicting soil liquefaction, a critical phenomenon that can significantly impact the stability and safety of structures during seismic events. Accurate liquefaction assessment is vital for geotechnical engineering, as it informs the design and mitigation strategies needed to safeguard infrastructure and reduce the risk ...
Arsham Moayedi Far, Masoud Zare
wiley +1 more source
Heart Sound Classification for Early Detection of Cardiovascular Diseases Using XGBoost and Engineered Acoustic Features. [PDF]
Karthikeya PPS +7 more
europepmc +1 more source

