The wiener index of the zero-divisor graph for a new class of residue class rings [PDF]
The zero-divisor graph of a commutative ring R, denoted by Γ(R), is a graph whose two distinct vertices x and y are joined by an edge if and only if xy = 0 or yx = 0.
Yinhu Wei, Ricai Luo
doaj +2 more sources
A graph-theoretic approach to ring analysis: Dominant metric dimensions in zero-divisor graphs [PDF]
This article investigates the concept of dominant metric dimensions in zero divisor graphs (ZD-graphs) associated with rings. Consider a finite commutative ring with unity, denoted as R, where nonzero elements x and y are identified as zero divisors if ...
Nasir Ali+4 more
doaj +2 more sources
On directed zero-divisor graphs of finite rings [PDF]
For an artinian ring $R$, the directed zero-divisor graph $\Gamma(R)$ is connected if and only if there is no proper one-sided identity element in $R$. Sinks and sources are characterized and clarified for finite ring $R$, especially, it is proved that ...
Wu, Tongsuo
core +5 more sources
Classification of Zero Divisor Graphs of Commutative Rings of Degrees 11,12 and 13 [PDF]
In 2005 Wang investigated the zero divisor graphs of degrees 5,6,9 and 10. In 2012 Shuker and Mohammad investigated the zero divisor graphs of degrees 7 and 8. In this paper, we consider zero divisor graphs of commutative rings of degrees 11, 12 and 13.
Nazar Shuker, Husam Mohammad
doaj +1 more source
Total perfect codes in graphs realized by commutative rings [PDF]
Let $R$ be a commutative ring with unity not equal to zero and let $\Gamma(R)$ be a zero-divisor graph realized by $R$. For a simple, undirected, connected graph $G = (V, E)$, a {\it total perfect code} denoted by $C(G)$ in $G$ is a subset $C(G ...
Rameez Raja
doaj +1 more source
Comments on the Clique Number of Zero-Divisor Graphs of Zn
In 2008, J. Skowronek-kazio´w extended the study of the clique number ωGZn to the zero-divisor graph of the ring Zn, but their result was imperfect. In this paper, we reconsider ωGZn of the ring Zn and give some counterexamples. We propose a constructive
Yanzhao Tian, Lixiang Li
doaj +1 more source
On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$
For a finite commutative ring $\mathbb{Z}_{n}$ with identity $1\neq 0$, the zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is a simple connected graph having vertex set as the set of non-zero zero divisors, where two vertices $x$ and $y$ are adjacent if and
S. Pirzada, B.A. Rather, T.A. Chishti
doaj +1 more source
Classification of Zero Divisor Graphs of a Commutative Ring With Degree Equal 7 and 8 [PDF]
In 2005 J. T Wang investigated the zero divisor graphs of degrees 5 and 6. In this paper, we consider the zero divisor graphs of a commutative rings of degrees 7 and 8.
Nazar Shuker, Husam Mohammad
doaj +1 more source
On distance signless Laplacian eigenvalues of zero divisor graph of commutative rings
For a simple connected graph $ G $ of order $ n $, the distance signless Laplacian matrix is defined by $ D^{Q}(G) = D(G) + Tr(G) $, where $ D(G) $ and $ Tr(G) $ is the distance matrix and the diagonal matrix of vertex transmission degrees, respectively.
Bilal A. Rather+4 more
doaj +1 more source
Metric and upper dimension of zero divisor graphs associated to commutative rings
Let R be a commutative ring with Z*(R) as the set of non-zero zero divisors. The zero divisor graph of R, denoted by Γ(R), is the graph whose vertex set is Z*(R), where two distinct vertices x and y are adjacent if and only if xy = 0.
Pirzada S., Aijaz M.
doaj +1 more source