Results 21 to 30 of about 88,527 (242)
Hardware acceleration of number theoretic transform for zk‐SNARK
An FPGA‐based hardware accelerator with a multi‐level pipeline is designed to support the large‐bitwidth and large‐scale NTT tasks in zk‐SNARK. It can be flexibly scaled to different scales of FPGAs and has been equipped in the heterogeneous acceleration system with the help of HLS and OpenCL.
Haixu Zhao +6 more
wiley +1 more source
Total perfect codes in graphs realized by commutative rings [PDF]
Let $R$ be a commutative ring with unity not equal to zero and let $\Gamma(R)$ be a zero-divisor graph realized by $R$. For a simple, undirected, connected graph $G = (V, E)$, a {\it total perfect code} denoted by $C(G)$ in $G$ is a subset $C(G ...
Rameez Raja
doaj +1 more source
Comments on the Clique Number of Zero-Divisor Graphs of Zn
In 2008, J. Skowronek-kazio´w extended the study of the clique number ωGZn to the zero-divisor graph of the ring Zn, but their result was imperfect. In this paper, we reconsider ωGZn of the ring Zn and give some counterexamples. We propose a constructive
Yanzhao Tian, Lixiang Li
doaj +1 more source
Dynamic multi‐objective optimisation of complex networks based on evolutionary computation
Abstract As the problems concerning the number of information to be optimised is increasing, the optimisation level is getting higher, the target information is more diversified, and the algorithms are becoming more complex; the traditional algorithms such as particle swarm and differential evolution are far from being able to deal with this situation ...
Linfeng Huang
wiley +1 more source
Zero-divisor ideals and realizable zero-divisor graphs [PDF]
We seek to classify the sets of zero-divisors that form ideals based on their zero-divisor graphs. We offer full classification of these ideals within finite commutative rings with identity. We also provide various results concerning the realizability of a graph as a zero-divisor graph. 1.
Axtell, Michael +2 more
openaire +3 more sources
On distance Laplacian spectrum of zero divisor graphs of the ring $\mathbb{Z}_{n}$
For a finite commutative ring $\mathbb{Z}_{n}$ with identity $1\neq 0$, the zero divisor graph $\Gamma(\mathbb{Z}_{n})$ is a simple connected graph having vertex set as the set of non-zero zero divisors, where two vertices $x$ and $y$ are adjacent if and
S. Pirzada, B.A. Rather, T.A. Chishti
doaj +1 more source
A Zero Divisor Graph Determined by Equivalence Classes of Zero Divisors [PDF]
We study the zero divisor graph determined by equivalence classes of zero divisors of a commutative Noetherian ring R. We demonstrate how to recover information about R from this structure. In particular, we determine how to identify associated primes from the graph.
Spiroff, Sandra, Wickham, Cameron
openaire +2 more sources
Classification of Zero Divisor Graphs of a Commutative Ring With Degree Equal 7 and 8 [PDF]
In 2005 J. T Wang investigated the zero divisor graphs of degrees 5 and 6. In this paper, we consider the zero divisor graphs of a commutative rings of degrees 7 and 8.
Nazar Shuker, Husam Mohammad
doaj +1 more source
On distance signless Laplacian eigenvalues of zero divisor graph of commutative rings
For a simple connected graph $ G $ of order $ n $, the distance signless Laplacian matrix is defined by $ D^{Q}(G) = D(G) + Tr(G) $, where $ D(G) $ and $ Tr(G) $ is the distance matrix and the diagonal matrix of vertex transmission degrees, respectively.
Bilal A. Rather +4 more
doaj +1 more source
Non Deterministic Zero Divisor Graph
A non-deterministic zero divisor graph refers to an element in a ring or algebraic structure that can multiply with another element to give zero, but the specific outcome of the multiplication is not uniquely determined.
Shakila Banu, Naveena Selvaraj
doaj +1 more source

