Results 241 to 250 of about 773,487 (287)

Interface Engineering Strategies for Realizing Anode‐Free Sodium Batteries: A Review

open access: yesAdvanced Energy Materials, EarlyView.
This review examines anode‐free sodium batteries as a promising solution for advancing sodium‐based energy storage. It focuses on the role of interface engineering in addressing challenges such as sodium deposition, interface stability, and dendrite growth.
Yulian Dong   +6 more
wiley   +1 more source

Synergetic Lattice and Surface Engineering: Stable High‐Voltage Cycle Performance in P3‐Type Layered Manganese Oxide

open access: yesAdvanced Energy Materials, EarlyView.
A dual lattice‐surface strategy employing NaTi2(PO4)3 is adopted to enhance the performance of P3‐type Na0.67[Zn0.3Mn0.7]O2, whereby Ti stabilizes the bulk lattice and surface P species mitigate degradation, collectively improving high‐voltage cycling stability, Na+ diffusion, and oxygen redox reversibility through synergistic structural and ...
Natalia Voronina   +13 more
wiley   +1 more source

Ferroelectric Interfaces for Dendrite Prevention in Zinc-Ion Batteries. [PDF]

open access: yesSmall
Hu X   +9 more
europepmc   +1 more source

Atomic Layer Deposition‐Modified Bifunctional Electrocatalysts for Rechargeable Zinc‐Air Batteries: Boosting Activity and Cycle Life

open access: yesAdvanced Energy Materials, EarlyView.
The transition metal oxide is precisely deposited on the catalyst surface via atomic layer deposition (ALD), forming a protective layer with catalytic activity. Electrochemical experiments, theoretical calculations, and in situ X‐ray absorption spectroscopy (XAS) battery testing collectively demonstrate that the modified transition metal oxide ...
Fang Dong   +4 more
wiley   +1 more source

Advances in Thermoelectric Thin Films Grown by Atomic Layer Deposition: A Critical Review of Performance and Challenges

open access: yesAdvanced Energy Materials, EarlyView.
This review highlights the use of atomic layer deposition (ALD) for fabricating thermoelectric thin films with atomic‐scale control. Four material classes—chalcogenides, doped oxides, ternary oxides, and multilayered structures—are compared in terms of growth dynamics, structure–property relationships, and thermoelectric performance. The precise tuning
Jorge Luis Vazquez‐Arce   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy