Results 221 to 230 of about 1,717,643 (309)

Photoswitching Conduction in Framework Materials

open access: yesAdvanced Functional Materials, EarlyView.
This mini‐review summarizes recent advances in state‐of‐the‐art proton and electron conduction in framework materials that can be remotely and reversibly switched on and off by light. It discusses the various photoswitching conduction mechanisms and the strategies employed to enhance photoswitched conductivity.
Helmy Pacheco Hernandez   +4 more
wiley   +1 more source

Photoresponsive Gas‐Permeable Membranes: Fundamentals, Innovations, and Prospects

open access: yesAdvanced Functional Materials, EarlyView.
Photoresponsive gas‐permeable membranes can be potentially used for smart packing, carbon capture, hydrogen purification, and optical gas valves due to their remote and non‐contact activation, precise spatial and temporal control, and reversible switching capabilities.
Zhuan Wang   +6 more
wiley   +1 more source

Gaussian‐Sigmoid Reinforcement Transistors: Resolving Exploration‐Exploitation Trade‐Off Through Gate Voltage‐Controlled Activation Functions

open access: yesAdvanced Functional Materials, EarlyView.
The characteristics of a vertical n–p–i–p heterostructure transistor device, which exhibits a voltage‐tunable transition between Gaussian and sigmoid functions, are investigated. The mixed state of the transfer curve enables the utilization of both exploitation and exploration, improving computational performance in reinforcement learning tasks ...
Jisoo Park   +7 more
wiley   +1 more source

Encapsulating Zinc Powder in MXene/Silk Scaffolds with Zincophilic‐Hydrophobic Polymer for Flexible Zinc‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This work develops flexible zinc‐ion batteries (FZIBs) using a zincophilic/hydrophobic polymer (thermoplastic polycarbonate‐based polyurethane, TPCU) to protect Zn powder anodes and MXene/Silk (MXS) as flexible current collectors. The designed TPCU‐ZnP@MXS structure enables uniform Zn deposition, yielding dendrite‐free anodes with stable cycling ...
Zixuan Yang   +8 more
wiley   +1 more source

A Peptide Nucleic Acid‐Functionalized Heterojunction Thin Film Transistor as a Scalable and Reusable Platform for Label‐Free Detection of MicroRNA

open access: yesAdvanced Functional Materials, EarlyView.
A miniaturized, label‐free, and enzyme‐free biosensor (miR‐TFT) enables direct electrical detection of microRNA (miRNA) with single‐nucleotide specificity and a detection limit of 0.6 fM. Built on a tri‐channel In2O3/ZnO heterojunction and functionalized with bespoke peptide nucleic acid (PNA) probes, the device is robust, reusable, and compatible with
Wejdan S. Al Ghamdi   +5 more
wiley   +1 more source

Influence of magnesium addition on microstructural and mechanical stability of hydrostatically extruded biodegradable zinc alloys

open access: gold
Magdalena Gieleciak   +6 more
openalex   +1 more source

Hydroxylated Ionic Liquids as Functional Additives for Stable Aqueous Zn Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A hydroxyl‐functionalized ionic liquid additive (HO‐EMImTfO) regulates Zn2+ solvation and electrodeposition by forming a stable ion‐diversion dam at the Zn interface. This design mitigates Zn pulverization, suppresses dendrite growth, and reduces side reactions, enabling Zn||Cu and Zn||V2O5 cells to achieve exceptional cycling stability and efficiency.
Qiang Yan   +6 more
wiley   +1 more source

Advanced Surface Engineering and Passivation Strategies of Quantum Dots for Breaking Efficiency Barrier of Clean Energy Technologies: A Comprehensive Review

open access: yesAdvanced Functional Materials, EarlyView.
This review describes the different surface engineering strategies for quantum dots that addresses the challenges associated with surface defects, highlighting their role in enhancing the performance of solar energy conversion technologies. Abstract Colloidal quantum dots (QDs) have garnered significant attention for their unique potential in clean ...
Kokilavani S., Gurpreet Singh Selopal
wiley   +1 more source

Home - About - Disclaimer - Privacy