Results 171 to 180 of about 299,598 (348)

Ionic–Bionic Interfaces: Advancing Iontronic Strategies for Bioelectronic Sensing and Therapy

open access: yesAdvanced Science, EarlyView.
Ionic–bionic interfaces for bioelectronics leverage ions as multifunctional mediators that combine mechanical compliance, ionic and electronic functionalities, and therapeutic effects. These systems offer real‐time biosignal transduction, effective wound dressing, responsive drug delivery, and seamless interaction between soft tissues and electronic ...
Yun Goo Ro   +6 more
wiley   +1 more source

Bioinspired Oxygen‑Enriched Nanodiamonds as Electrolytic Erythrocyte Mimics for Dendrite‑Free Zinc‑Ion Batteries. [PDF]

open access: yesAdv Sci (Weinh)
Ding W   +11 more
europepmc   +1 more source

Power system design for a Jupiter solar electric propulsion spacecraft [PDF]

open access: yes
Power system design for Jupiter solar electric propulsion ...
Loucks, R. E., Truscello, V.
core   +1 more source

A Perspective on the Applications of Triphasic Gas Storage in Electrochemical Systems

open access: yesAdvanced Science, EarlyView.
Gas storage in microporous materials positioned locally at an electrode or electrocatalyst surface enhances electrochemical processes. Abstract Microporous materials store gases under dry conditions (e.g., hydrogen or oxygen via physisorption), but in some cases microporous materials also show triphasic (e.g., in a solid|gas|liquid system) gas storage ...
Zhongkai Li   +9 more
wiley   +1 more source

Decoding Hydrogen-Bond Network of Electrolyte for Cryogenic Durable Aqueous Zinc-Ion Batteries. [PDF]

open access: yesNanomicro Lett
Wei X   +10 more
europepmc   +1 more source

An Advanced High‐Performance Ultrafast Ammonium‐Ion Aqueous Battery Based on Dual‐Metal Redox Open Framework Molecular Magnet

open access: yesAdvanced Science, EarlyView.
The Prussian Blue Analogue molecular magnet KMnFeHCF is demonstrated as a high‐performance cathode for ultra‐fast aqueous ammonium‐ion batteries. A full cell using KMnFeHCF and graphite delivers ~71 mAh g−1 at 1.25 A g−1 and ~51 mAh g−1 at 2.2 A g−1, retaining 50% capacity after 1850 cycles. Its scalability, cycling stability, and low cost offer strong
Nilasha Maiti   +5 more
wiley   +1 more source

Hydrogel Electrolytes for Zinc-Ion Batteries: Materials Design, Functional Strategies, and Future Perspectives. [PDF]

open access: yesNanomicro Lett
Zhang Z   +10 more
europepmc   +1 more source

Magnetically Responsive Piezoelectric Nanocapacitors Enhance Neural Recovery Following Spinal Cord Injury via Targeted Spinal Magnetic Stimulation

open access: yesAdvanced Science, EarlyView.
This study presents a novel “in vivo–in vitro” therapeutic strategy for spinal cord injury by leveraging magnetically responsive piezoelectric nanomaterials. These nanomaterials enable targeted delivery of localized electrical stimulation at the injury site through noninvasive external magnetic actuation, thereby promoting axonal regeneration and ...
Zhihang Xiao   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy