Results 251 to 260 of about 299,598 (348)
Here we explore the use of lead‐free metal halide perovskites in lithium ion batteries. Cesium zinc chloride and bromide both show reasonable discharge capacities and high stability compared to lead based perovskites. ABSTRACT Halide perovskites have recently gained attention for use as electrode materials in lithium‐ion batteries. However, lead halide
Neha Tewari +5 more
wiley +1 more source
Stable Vacancy-Rich Sodium Vanadate as a Cathode for High-Performance Aqueous Zinc-Ion Batteries. [PDF]
Xie Z, Qu Y, Kong F, Zhao R, Wang X.
europepmc +1 more source
Aqueous Zinc‐Based Batteries: Active Materials, Device Design, and Future Perspectives
This review conducts a comprehensive analysis of aqueous zinc‐based batteries (AZBs) based on their intrinsic mechanisms, including redox reactions, ion intercalation reactions, alloying reactions, electrochemical double‐layer reactions, and mixed mechanisms, systematically discussing recent advancements in each type of AZBs.
Yan Ran, Fang Dong, Shuhui Sun, Yong Lei
wiley +1 more source
Toward Complete CO2 Electroconversion: Status, Challenges, and Perspectives
Electrocatalytic CO2 reduction and CO2 batteries face challenges in achieving complete CO2 conversion with high conversion rates and Faradaic efficiency simultaneously. Existing systems compromise one for the other with incomplete CO2 conversion and inefficiencies, hindering practical applications. This perspective highlights state‐of‐the‐art progress,
Changfan Xu +5 more
wiley +1 more source
Correction to "Directionally Modulated Zinc Deposition by a Robust Zincophilic Cu-Phthalocyanine Protective Layer in Dendrite-Free Aqueous Zinc Ion Batteries". [PDF]
europepmc +1 more source
Designing an Anionic Layer in Low-Concentration Electrolytes to Promote In-Plane Ion Diffusion for Dendrite-Free Zinc-Ion Batteries. [PDF]
Zhang Y +9 more
europepmc +1 more source
Interface Engineering Strategies for Realizing Anode‐Free Sodium Batteries: A Review
This review examines anode‐free sodium batteries as a promising solution for advancing sodium‐based energy storage. It focuses on the role of interface engineering in addressing challenges such as sodium deposition, interface stability, and dendrite growth.
Yulian Dong +6 more
wiley +1 more source
A dual lattice‐surface strategy employing NaTi2(PO4)3 is adopted to enhance the performance of P3‐type Na0.67[Zn0.3Mn0.7]O2, whereby Ti stabilizes the bulk lattice and surface P species mitigate degradation, collectively improving high‐voltage cycling stability, Na+ diffusion, and oxygen redox reversibility through synergistic structural and ...
Natalia Voronina +13 more
wiley +1 more source
Ferroelectric Interfaces for Dendrite Prevention in Zinc-Ion Batteries. [PDF]
Hu X +9 more
europepmc +1 more source
The transition metal oxide is precisely deposited on the catalyst surface via atomic layer deposition (ALD), forming a protective layer with catalytic activity. Electrochemical experiments, theoretical calculations, and in situ X‐ray absorption spectroscopy (XAS) battery testing collectively demonstrate that the modified transition metal oxide ...
Fang Dong +4 more
wiley +1 more source

