Results 101 to 110 of about 2,214 (195)

[Research on inversion method of intravascular blood flow velocity based on convolutional neural network]. [PDF]

open access: yesSheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2022
Wang Y, Yang D, Xu B, Zhang X, Wang X.
europepmc   +1 more source

基于CTGAN-CRS与改进卷积神经网络的变压器故障诊断方法

open access: yesGaoya dianqi
为了提升油中溶解气体数据不平衡场景下的电力变压器故障诊断性能,文中提出了一种基于数据增强与特征扩增结合卷积神经网络进行变压器故障诊断的方法。首先,建立一种基于条件式表格生成对抗网络(conditional tabular generative adversarial network,CTGAN)结合级联式拒绝采样(cascade reject sampling,CRS)的数据增强方法,以实现不平衡数据集的高质量均衡化;其次,构建了一种全类型气体比值结合随机森林算法(gas ratios and ...
阎对丰   +4 more
doaj  

[CT and MRI fusion based on generative adversarial network and convolutional neural networks under image enhancement]. [PDF]

open access: yesSheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2023
Liu Y   +11 more
europepmc   +1 more source

Unsupervised Learning Method for the Wave Equation Based on Finite Difference Residual Constraints Loss

open access: yes
The wave equation is an important physical partial differential equation, and in recent years, deep learning has shown promise in accelerating or replacing traditional numerical methods for solving it.
Deng, Xiao-Gang   +4 more
core  

基于轻量级卷积神经网络的复合绝缘子憎水性诊断方法研究

open access: yesGaoya dianqi
复合绝缘子因其良好的性能在电网中普遍使用,为提高复合绝缘子带电憎水性检测的智能化和自动化水平,文中提出一种基于轻量级卷积神经网络的复合绝缘子憎水性诊断方法。文中使用EfficientNet算法对复合绝缘子不同憎水性等级对应的水迹图像数据进行特征提取训练,通过对模型准确率和参数量等方面的比较,并结合模型在边缘计算设备上的正向推理速度,确定EfficientNet-b3模型为本应用场景下的最优模型。该模型分类准确率为96.43%,在Jetson Xavier NX上的正向推理速度为57.16 FPS ...
马子儒   +4 more
doaj  

[Automatic detection model of hypertrophic cardiomyopathy based on deep convolutional neural network]. [PDF]

open access: yesSheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2022
Bu Y, Cha X, Zhu J, Su Y, Lai D.
europepmc   +1 more source

基于YOLOv5的绝缘子图像识别算法轻量化改进研究

open access: yesDianci bileiqi
为解决传统神经网络图像识别模型无法在无人机等微型嵌入式设备有效部署的问题,基于YOLOv5算法提出一种针对无人机嵌入式平台的电力巡检绝缘子图像轻量化识别算法。以ShuffleNetV2为骨干网络,并使用深度可分离卷积替换传统卷积减少参数量,降低算法对物理内存的需求。同时针对绝缘子特征对图像预处理部分进行改进,使用PeleeNet网络中的Stem结构代替Focus结构,加快训练速度,减轻嵌入式平台CPU的计算压力。另外,在残差网络中引入Transformer注意力机制,提高算法对遮挡目标的提取能力 ...
苏凯第, 赵巧娥
doaj  

基于卷积神经网络的多维度分布式光纤振动传感事件识别

open access: yesActa Optica Sinica
靳喜博 Jin Xibo   +8 more
semanticscholar   +1 more source

联合卷积神经网络和转换器的红外与可见光图像融合

open access: yesLaser & Optoelectronics Progress, 2023
杨洋 Yang Yang   +2 more
semanticscholar   +1 more source

基于Res-CapsNet与改进YOLOv4 的绝缘子破损识别与定位

open access: yesDianci bileiqi
针对传统卷积神经网络(CNN)在绝缘子破损检测方面存在识别效果差、速度慢等问题,本研究提出一种基于Res-CapsNet(残差胶囊网络)与改进YOLOv4相结合的算法,包括绝缘子分类检测及破损定位两部分。首先,由于残差网络可以解决传统分类网络通过不断堆叠卷积层而出现的模型退化问题,因此提出采用ResNet34作为预训练模型提取绝缘子图像特征,将提取出的卷积特征转化成胶囊特征,然后使用动态路由算法进行传递以保证特征信息的完整性,因此不仅使输出量保留其方向和角度,同时可提取绝缘子更深层的特征 ...
卞建鹏, 朱泽明, 陈璇, 安荣廷
doaj   +2 more sources

Home - About - Disclaimer - Privacy