Results 1 to 10 of about 3,476 (193)

面向机器学习课程的案例教学 [PDF]

open access: bronze教育研究前沿进展, 2022
案例教学主要针对现阶段东北大学医学与生物信息工程学院机器学习课程理论与实践脱节的问题。 通过增加实验学时和建设各种实验资源,使学生对学习产生兴趣,达到学生自主学习目的,同时又可以 锻炼动手操作能力。要将教师和学生放在同等的地位,围绕项目展开合作,形成以项目为驱动、以产业 为导向的实验模式和教学体系。
月阳 滕, 婷婷 沈
openalex   +2 more sources

[Identification of Osteoarthritis Inflamm-Aging Biomarkers by Integrating Bioinformatic Analysis and Machine Learning Strategies and the Clinical Validation]. [PDF]

open access: yesSichuan Da Xue Xue Bao Yi Xue Ban
目的 本研究旨在识别骨关节炎(osteoarthritis, OA)中炎性衰老生物标志物。 方法 GEO(Gene Expression Omnibus)数据库获得年轻OA和老年OA微阵列基因谱,人类衰老基因组资源数据库(Human Aging Genome Resource, HAGR)获得衰老相关基因(aging-related genes, ARGs)。筛选获得年轻OA与老年OA的差异基因,再与ARGs取交集得到OA衰老相关基因。富集分析揭示OA衰老相关标志物的潜在机制 ...
Zhou Q   +6 more
europepmc   +2 more sources

Transparent machine learning suggests a key driver in the decision to start insulin therapy in individuals with type 2 diabetes. [PDF]

open access: yesJ Diabetes, 2023
HighlightsML suggests that when the HbA1c gap from a previous visit is >11 mmol/mol (1.0%) there is a greater probability that insulin therapy will be initiated, but when HbA1c gap is <6.6 mmol/mol (0.6%), a timely initiation of insulin therapy is less probable.
Musacchio N   +7 more
europepmc   +2 more sources

Machine learning-driven risk assessment of coronary heart disease: Analysis of NHANES data from 1999 to 2018. [PDF]

open access: yesZhong Nan Da Xue Xue Bao Yi Xue Ban
目的 全球冠心病(coronary artery heart disease,CHD)发病率居高不下,给公共卫生系统带来了极大的负担和挑战。有效预防和早期诊断CHD成为减轻这一负担的关键策略。本研究致力于探索运用先进的机器学习技术来提高CHD早期筛查和风险评估的准确性。 方法 纳入美国国家卫生和营养调查(National Health and Nutrition Examination Survey,NHANES)数据库1999至2018年49 490名研究对象,将数据集按7꞉3划分为训练集和测试集 ...
Lu J   +7 more
europepmc   +2 more sources

Screening of key immune-related gene in Parkinson's disease based on WGCNA and machine learning. [PDF]

open access: yesZhong Nan Da Xue Xue Bao Yi Xue Ban
目的 在帕金森病的发病过程中,免疫系统的异常激活和炎症反应起着重要作用。然而,目前对于免疫相关关键基因在帕金森病发生和发展中的具体作用和作用机制的了解仍然有限。本研究旨在通过加权基因共表达网络分析(weighted gene co-expression network analysis,WGCNA)和机器学习筛选帕金森病免疫相关关键基因。 方法 从基因表达综合(Gene Expression Omnibus,GEO)数据库下载基因芯片数据,采用WGCNA筛选出与帕金森病相关的重要基因模块 ...
Huang Y   +6 more
europepmc   +2 more sources

[Construction of a machine learning ensemble prediction model for gas chromatographic retention index on stationary phases with different polarities]. [PDF]

open access: yesSe Pu
保留指数是在色谱分析中用于表征化合物保留性能的指标,是用于化合物结构鉴定的重要参数。化合物在不同极性固定相上的保留指数差异,使得当前基于单一极性固定相的保留指数预测模型无法有效应用于多种极性固定相的保留指数预测。因此,本研究建立了不同极性固定相上气相色谱保留指数预测模型,从文献中收集到2499种化合物在8种类型固定相上的保留指数数据共4183条,根据McReynolds常数进一步将固定相划分为强极性、极性、中等极性、弱极性与非极性五类,耦合化合物分子结构特征与固定相极性独热编码特征作为模型输入 ...
Wang QY, Zhu YL, Li XH.
europepmc   +2 more sources

[Screening for Characteristic Genes of Different Traditional Chinese Medicine Syndromes of Psoriasis Vulgaris: A Study Based on Bioinformatics and Machine Learning]. [PDF]

open access: yesSichuan Da Xue Xue Bao Yi Xue Ban
目的 通过生物信息学和机器学习筛选寻常型银屑病(psoriasis vulgaris, PV)血热证(blood-heat syndrome, BHS)、血瘀证(blood stasis syndrome, BSS)及血燥证(blood-dryness syndrome, BDS)的重要特征基因,为不同中医证型PV的临床诊疗提供科学依据。 方法 从基因表达数据库(Gene Expression Omnibus, GEO)下载GSE192867数据集,利用limma包筛选患者与健康人群的PV、BHS ...
Liu X   +6 more
europepmc   +2 more sources

Development and validation of risk prediction models for large for gestational age infants using logistic regression and two machine learning algorithms. [PDF]

open access: yesJ Diabetes, 2023
Highlights The logistic regression model consisted of seven commonly used clinical indicators (including lipid profile) and gestational diabetes mellitus subtypes, with an area under the curve (AUC) of 0.760 for the training set and 0.748 for the internal validation set.
Wang N   +11 more
europepmc   +2 more sources

[Preoperative Evaluation of Cervical Lymph Node Metastasis in Patients With Hashimoto's Thyroiditis Combined With Thyroid Papillary Carcinoma Using Machine Learning and Radiomics-Based Features: A Preliminary Study]. [PDF]

open access: yesSichuan Da Xue Xue Bao Yi Xue Ban
目的 利用机器学习(machine learning, ML)模型分析桥本甲状腺炎(Hashimoto thyroiditis, HT)合并甲状腺乳头状癌(papillary thyroid carcinoma, PTC)患者的甲状腺肿瘤的二维超声图像提取的影像组学和临床特征,探讨其术前无创识别该类患者颈部淋巴结转移(lymph node metastasis, LNM)的能力。 方法 纳入HT合并PTC患者528例,以病理结果为金标准划分为存在颈部淋巴结转移组和不存在颈部淋巴结转移组 ...
Fu R   +7 more
europepmc   +2 more sources

[Predicting Intensive Care Unit Mortality in Patients With Heart Failure Combined With Acute Kidney Injury Using an Interpretable Machine Learning Model: A Retrospective Cohort Study]. [PDF]

open access: yesSichuan Da Xue Xue Bao Yi Xue Ban
目的 开发一种可解释的机器学习模型,以提高心力衰竭(heart failure, HF)合并急性肾损伤(acute kidney injury, AKI)患者短期死亡率的早期预测准确性。 方法 本回顾性队列研究利用了基于电子病历的公开大型数据库重症医学信息数据库MIMIC-Ⅳ(Medical Information Mart for Intensive Care Ⅳ, 版本2.0)。提取了患者入住ICU最初24 h的数据,并将其分为训练集(80%)和验证集(20%)。利用沙普利可加性解释(Shapley
Luo X   +5 more
europepmc   +2 more sources

Home - About - Disclaimer - Privacy