Results 121 to 130 of about 265,721 (288)

By dawn or dusk—how circadian timing rewrites bacterial infection outcomes

open access: yesFEBS Letters, EarlyView.
The circadian clock shapes immune function, yet its influence on infection outcomes is only beginning to be understood. This review highlights how circadian timing alters host responses to the bacterial pathogens Salmonella enterica, Listeria monocytogenes, and Streptococcus pneumoniae revealing that the effectiveness of immune defense depends not only
Devons Mo   +2 more
wiley   +1 more source

Phosphatidylinositol 4‐kinase as a target of pathogens—friend or foe?

open access: yesFEBS Letters, EarlyView.
This graphical summary illustrates the roles of phosphatidylinositol 4‐kinases (PI4Ks). PI4Ks regulate key cellular processes and can be hijacked by pathogens, such as viruses, bacteria and parasites, to support their intracellular replication. Their dual role as essential host enzymes and pathogen cofactors makes them promising drug targets.
Ana C. Mendes   +3 more
wiley   +1 more source

Poly(G)7 box: a functional element of mammalian 18S rRNA involved in translation

open access: yesRNA Biology
In eukaryotes, the ribosomal small subunit (40S) is composed of 18S rRNA and 33 ribosomal proteins. 18S rRNA has a special secondary structure and is an indispensable part of the translation process.
Dahao Wei   +4 more
doaj   +1 more source

Comparative analysis of 18S rRNA genes from Myxobolus aeglefini Auerbach, 1906 isolated from cod (Gadus morhua), Plaice (Pleuronectes platessa) and dab (Limanda limanda), using PCR-RFLP [PDF]

open access: yes, 2002
The myxosporean parasite Myxobolus aeglefini is a marine species, which can be found in the cartilage of mainly gadid fish species. The parasite has, however, been recorded in the flatfish plaice (Pleuronectes platessa) and dab (Limanda limanda).
Buchmann, K.   +3 more
core  

Structural insights into lacto‐N‐biose I recognition by a family 32 carbohydrate‐binding module from Bifidobacterium bifidum

open access: yesFEBS Letters, EarlyView.
Bifidobacterium bifidum establishes symbiosis with infants by metabolizing lacto‐N‐biose I (LNB) from human milk oligosaccharides (HMOs). The extracellular multidomain enzyme LnbB drives this process, releasing LNB via its catalytic glycoside hydrolase family 20 (GH20) lacto‐N‐biosidase domain.
Xinzhe Zhang   +5 more
wiley   +1 more source

The role and implications of mammalian cellular circadian entrainment

open access: yesFEBS Letters, EarlyView.
At their most fundamental level, mammalian circadian rhythms occur inside every individual cell. To tell the correct time, cells must align (or ‘entrain’) their circadian rhythm to the external environment. In this review, we highlight how cells entrain to the major circadian cues of light, feeding and temperature, and the implications this has for our
Priya Crosby
wiley   +1 more source

Haemoproteus tartakovskyi and Plasmodium relictum (Haemosporida, Apicomplexa) differentially express distinct 18S rRNA gene variants in bird hosts and dipteran vectors

open access: yesParasites & Vectors
Background Most mammalian Plasmodium species possess distinct 18S ribosomal RNA (rRNA) gene copies, which are differentially expressed in vertebrate hosts and mosquito vectors.
Josef Harl   +8 more
doaj   +1 more source

B chromosome and NORs polymorphism in Callichthys callichthys (Linnaeus, 1758) (Siluriformes: Callichthyidae) from upper Paraná River, Brazil

open access: yesNeotropical Ichthyology
B chromosomes are extra chromosomes from the normal chromosomal set, found in different organisms, highlighting their presence on the group of fishes.
Jocicléia Thums Konerat   +4 more
doaj   +1 more source

Molecular bases of circadian magnesium rhythms across eukaryotes

open access: yesFEBS Letters, EarlyView.
Circadian rhythms in intracellular [Mg2+] exist across eukaryotic kingdoms. Central roles for Mg2+ in metabolism suggest that Mg2+ rhythms could regulate daily cellular energy and metabolism. In this Perspective paper, we propose that ancestral prokaryotic transport proteins could be responsible for mediating Mg2+ rhythms and posit a feedback model ...
Helen K. Feord, Gerben van Ooijen
wiley   +1 more source

Home - About - Disclaimer - Privacy