Results 281 to 290 of about 514,785 (377)

14,441 Genomics-Based Validated Automated Comprehensive Clinicopathologic Correlations for Myeloid Neoplasms. [PDF]

open access: yesSci Data
Elsafty A   +61 more
europepmc   +1 more source

Polarization‐resolved femtosecond Vis/IR spectroscopy tailored for resolving weak signals in biological samples using minimal sample volume

open access: yesFEBS Open Bio, EarlyView.
Unique biological samples, such as site‐specific mutant proteins, are available only in limited quantities. Here, we present a polarization‐resolved transient infrared spectroscopy setup with referencing to improve signal‐to‐noise tailored towards tracing small signals. We provide an overview of characterizing the excitation conditions for polarization‐
Clark Zahn, Karsten Heyne
wiley   +1 more source

HIV‐1 establishes immediate latency in T cells expressing the viral Nef protein

open access: yesFEBS Open Bio, EarlyView.
Nef is a viral protein often omitted from HIV‐1 reporter viruses. Consequently, its role in viral latency is unclear. We developed three novel dual reporter HIV‐1 derivatives that express Nef and allow for detection of latent and productive infection. Using these reporters, we show that Nef does not affect the establishment of immediate viral latency ...
Cindy Lam, Ivan Sadowski
wiley   +1 more source

Fourier-based three-dimensional multistage transformer for aberration correction in multicellular specimens. [PDF]

open access: yesNat Methods
Alshaabi T   +19 more
europepmc   +1 more source

BMI‐1 modulation and trafficking during M phase in diffuse intrinsic pontine glioma

open access: yesFEBS Open Bio, EarlyView.
The schematic illustrates BMI‐1 phosphorylation during M phase, which triggers its translocation from the nucleus to the cytoplasm. In cycling cells, BMI‐1 functions within the PRC1 complex to mediate H2A K119 monoubiquitination. Following PTC596‐induced M phase arrest, phosphorylated BMI‐1 dissociates from PRC1 and is exported to the cytoplasm via its
Banlanjo Umaru   +6 more
wiley   +1 more source

Nuclear pore links Fob1‐dependent rDNA damage relocation to lifespan control

open access: yesFEBS Open Bio, EarlyView.
Damaged rDNA accumulates at a specific perinuclear interface that couples nucleolar escape with nuclear envelope association. Nuclear pores at this site help inhibit Fob1‐induced rDNA instability. This spatial organization of damage handling supports a functional link between nuclear architecture, rDNA stability, and replicative lifespan in yeast.
Yamato Okada   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy