Results 161 to 170 of about 1,395,787 (296)

Homologous expression and purification of human HAX‐1 for structural studies

open access: yesFEBS Open Bio, EarlyView.
This research protocol provides detailed instructions for cloning, expressing, and purifying large quantities of the intrinsically disordered human HAX‐1 protein, N‐terminally fused to a cleavable superfolder GFP, from mammalian cells. HAX‐1 is predicted to undergo posttranslational modifications and to interact with membranes, various cellular ...
Mariana Grieben
wiley   +1 more source

Molecular determinants of signal transduction in tropomyosin receptor kinases

open access: yesFEBS Open Bio, EarlyView.
Tropomyosin receptor kinases control critical neuronal functions, but how do the same receptors produce diverse cellular responses? This review explores the structural mechanisms behind Trk signaling diversity, focusing on allosteric modulation and ligand bias.
Giray Enkavi
wiley   +1 more source

Studies on Amino Acids. III

open access: bronze, 1950
Sueo Tatsuoka   +2 more
openalex   +2 more sources

ATG4B is required for mTORC1‐mediated anabolic activity and is associated with clinical outcomes in non‐small cell lung cancer

open access: yesFEBS Open Bio, EarlyView.
The relationship between anabolic and catabolic processes governing lung cancer cell growth is nuanced. We show that ATG4B, an autophagy regulator, is elevated in lung cancer and that high ATG4B is associated with worse patient outcomes. Targeting ATG4B in cells reduces growth, protein synthesis, and mTORC1 activity, demonstrating a new relationship ...
Patrick J. Ryan   +6 more
wiley   +1 more source

Foetal Amino Acids [PDF]

open access: yesProceedings of the Nutrition Society, 1977
Merete Giles, F. Cockburn
openaire   +3 more sources

Calcium‐sensing receptor induces the apoptosis of chondrocytes in cooperation with phosphate transporter

open access: yesFEBS Open Bio, EarlyView.
Excess Ca2+ ions activate the Calcium‐Sensing Receptor (CaSR), which subsequently drives the uptake of excess inorganic phosphate (Pi) via the Pi transporter (Pit−1) in chondrocytes. This mechanism causes a toxic increase in intracellular Pi concentration, ultimately leading to chondrocyte apoptosis and pathological mineralization. Excess extracellular
Sachie Nakatani   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy