Results 171 to 180 of about 2,598,203 (404)

Bioinspired Shape Reconfigurable, Printable, and Conductive “E‐Skin” Patch with Robust Antibacterial Properties for Human Health Sensing

open access: yesAdvanced Functional Materials, EarlyView.
In this article, Hojin Kim, Sayan Deb Dutta, and co‐workers report a shape‐reconfigurable, 3D printable, and highly adhesive slime‐like ‘electronic skin’ or ‘E‐skin’ patch for human health sensing and tissue engineering applications. The dual reinforcement of hydrogel patch with carbon nanotubes (CNTs) and cellulose nanocrystals (CNCs) improve the ...
Hojin Kim   +6 more
wiley   +1 more source

Studies on the Production of Antibiotics by Actinomycetes and Molds [PDF]

open access: bronze, 1946
Ralph Emerson   +3 more
openalex   +1 more source

Synthetic Strategy for mRNA Encapsulation and Gene Delivery with Nanoscale Metal‐Organic Frameworks

open access: yesAdvanced Functional Materials, EarlyView.
This research utilizes the ZIF‐8 for the encapsulation and intracellular delivery of nucleic acids, specifically mRNA, for applications in gene delivery. Integrating PEI addresses the issue of mRNA leakage from ZIF‐8, resulting in the delivery and expression of green fluorescent protein (GFP) in vitro and firefly luciferase in vivo.
Harrison Douglas Lawson   +12 more
wiley   +1 more source

Cholesterol in mRNA‐Lipid Nanoparticles can be Replaced with the Synthetic Mycobacterial Monomycoloyl Glycerol Analogue MMG‐1

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that cholesterol in messenger RNA‐lipid nanoparticles (mRNA‐LNPs) can be completely replaced with an immunopotentiating lipid, i.e., a synthetic analogue of the C‐type lectin receptor agonist monomycoloyl glycerol (MMG‐1), without compromising physicochemical properties, in vivo transfection efficiency, and immunogenicity of the
Abhijeet G. Lokras   +19 more
wiley   +1 more source

Characteristics of demand for antibiotics in primary care: an almost ideal demand system approach [PDF]

open access: yes
We model demand for different classes of antibiotics used for respiratory infections in outpatient care using a linear approximate almost ideal demand system approach.
Giuliano Masiero   +2 more
core  

Post Penicillin Antibiotics: From acceptance to resistance? [PDF]

open access: yes, 2000
Edited transcript of a Witness Seminar held at the Wellcome Institute for the History of Medicine, in London, on 12 May 1998. First published by the Wellcome Trust, 2000. ©The Trustee of the Wellcome Trust, London, 2000.
Reynolds, LA, Tansey, EM
core  

Anionic Citrate‐Based 3D‐Printed Scaffolds for Tunable and Sustained Orthobiologic Delivery to Enhance Tissue Regeneration

open access: yesAdvanced Functional Materials, EarlyView.
A potent anionic citric acid‐based 3D‐printed scaffold is developed for the sustained and controlled release of orthobiologics to enhance orthopedic therapeutic efficacy. Comprehensive in vivo studies demonstrated effective bone fusion and high safety at a low dose of BMP‐2 delivered by the system, establishing it as a promising platform for safe ...
Se‐Hwan Lee   +12 more
wiley   +1 more source

Battery‐Free, Wireless Multi‐Sensing Platform for Comprehensive Management of Pressure Injury and Hygiene

open access: yesAdvanced Functional Materials, EarlyView.
A battery‐free, wireless device for real‐time monitoring of pressure injury and hygiene integrates pressure (≈10 kPa), temperature (≈40 °C), and NH3 gas sensing with antibacterial functionality. Enabled by near‐field communication, it ensures simultaneous, interference‐free mechanical and chemical monitoring, offering a practical solution for pressure ...
Myungwoo Choi   +19 more
wiley   +1 more source

Cell‐Delivering Injectable Hydrogels with Tunable Microporous Structures Improve Therapeutic Efficacy for Volumetric Muscle Loss

open access: yesAdvanced Functional Materials, EarlyView.
The study presents an injectable hydrogel with tunable microporosity to improve mesenchymal stem cell delivery for volumetric muscle loss treatment. Mesenchymal stem cells encapsulated in porous hydrogels significantly promote the spreading, proliferation, and cytokine secretion of mesenchymal stem cells.
Hana Yasue   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy