Results 231 to 240 of about 538,466 (312)

Fermented Lacticaseibacillus Paracasei Cultures Ameliorate Colitis by Modulating Microbiota‐Derived Tryptophan Metabolism and Macrophage Polarization

open access: yesAdvanced Science, EarlyView.
A solid‐state fermented probiotic (PYW) is developed using wheat bran as substrate, containing high viable Lacticaseibacillus paracasei and bioactive metabolites. PYW alleviates intestinal inflammation by gut microbiota composition, enriching indole derivatives, activating aryl hydrocarbon receptor signaling, and regulating macrophage polarization. PYW
Heng Zhang   +11 more
wiley   +1 more source

Antioxidant, Enzyme Inhibitory, and Protective Effect of Amelanchier lamarckii Extract. [PDF]

open access: yesPlants (Basel)
Dăescu AM   +6 more
europepmc   +1 more source

Ionic–Bionic Interfaces: Advancing Iontronic Strategies for Bioelectronic Sensing and Therapy

open access: yesAdvanced Science, EarlyView.
Ionic–bionic interfaces for bioelectronics leverage ions as multifunctional mediators that combine mechanical compliance, ionic and electronic functionalities, and therapeutic effects. These systems offer real‐time biosignal transduction, effective wound dressing, responsive drug delivery, and seamless interaction between soft tissues and electronic ...
Yun Goo Ro   +6 more
wiley   +1 more source

Engineered GM1 Intersects Between Mitochondrial and Synaptic Pathways to Ameliorate ALS Pathology

open access: yesAdvanced Science, EarlyView.
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease driven by genetic and molecular disruptions affecting energy balance, protein homeostasis, and stress responses in nerve cells. Studies using human and rodent models identified convergent defects in mitochondria and synaptic function.
Federica Pilotto   +11 more
wiley   +1 more source

PDIA3 Inhibition Facilitates Sensitivity of IKE‐Induced Ferroptosis via STAT3/LCN2 Axis to Improve Glioblastoma Therapy

open access: yesAdvanced Science, EarlyView.
In this manuscript, protein disulfide isomerase A3 (PDIA3) is identified as a key factor mediating the susceptibility of ferroptosis in GBM. Inhibition of PDIA3 enhances IKE or cystine starvation‐induced ferroptosis in GBM cells by resulting in the accumulation of lipid peroxidation and a reduction in GSH level.
Jie Zhang   +19 more
wiley   +1 more source

Home - About - Disclaimer - Privacy