Results 121 to 130 of about 4,322,464 (262)
Electroactive Liquid Crystal Elastomers as Soft Actuators
Electroactive liquid crystal elastomers (eLCEs) can be actuated via electromechanical, electrochemical, or electrothermal effects. a) Electromechanical effects include Maxwell stress, electrostriction, and the electroclinic effect. b) Electrochemical effects arise from electrode redox reactions.
Yakui Deng, Min‐Hui Li
wiley +1 more source
Three‐dimensional Antimony Sulfide Based Flat Optics
This work presents the development of a grayscale electron beam lithography (g‐EBL) method for fabricating antimony trisulfide (Sb2S3) nanostructures with customizable 3D profiles. The refractive index of g‐EBL patterned Sb2S3 is determined based on the synergy of genetic algorithm and transfer matrix method.
Wei Wang +18 more
wiley +1 more source
It is reported that the ferroelectric switching behavior of rhombohedral (3R) phase transition metal dichalcogenide (TMD) bilayers strongly depends on their domain structures. Single‐domain TMDs (SD‐TMDs) with domain‐wall‐free structures exhibit robust and stable polarization switching, whereas poly‐domain TMDs (PD‐TMDs) with randomly distributed ...
Ji‐Hwan Baek +8 more
wiley +1 more source
Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha +18 more
wiley +1 more source
Trap state engineering in inverted organic photodetectors (OPDs) is achieved via combined layer‐by‐layer (LbL) processing and poly(N‐vinylcarbazole) (PVK) incorporation. LbL reduces the trap density while PVK additives gradually shift trap states from shallow band‐edge to deep mid‐gap levels, tailoring the energy distribution.
Jingwei Yi +10 more
wiley +1 more source
An oral nanoplatform, MOP@T@D, which can maintain glucose homeostasis and restore islet β cells in diabetic rats is developed. It achieves efficient intestinal absorption and liver‐targeted delivery. The nanoparticle disintegrates only in response to hyperglycemia to release insulin on demand and provides antioxidant protection through selenoprotein ...
Chenxiao Chu +14 more
wiley +1 more source
A mechanically tunable hydrogel composed of gelatin, chondroitin sulfate and laminin promotes angiogenesis in vitro without the supplement of growth factors. Endothelial cells morphogenesis was further enhanced by medium conditioned with bioactive glass 58S‐released ions (Ca and Si), thus offering a promising strategy to vascularize 3D tissue ...
Marco Piazzoni +13 more
wiley +1 more source
Mesoporous Carbon Thin Films with Large Mesopores as Model Material for Electrochemical Applications
Mesoporous carbon thin films possessing 70 nm mesopores are prepared on titanium substrates by soft templating of resol resins with a self‐synthesized poly(ethylene oxide)‐block‐poly(hexyl acrylate) block copolymer. A strategy to avoid corrosion of the metal substrate is presented, and the films are extensively characterized in terms of morphology ...
Lysander Q. Wagner +9 more
wiley +1 more source
Restructuring-Regulated Bismuth Catalyst Promotes Electrochemical CO<sub>2</sub> Reduction to Formic Acid in Acidic Electrolyte. [PDF]
Chen G +11 more
europepmc +1 more source
Electron–Matter Interactions During Electron Beam Nanopatterning
This article reviews the electron–matter interactions important to nanopatterning with electron beam lithography (EBL). Electron–matter interactions, including secondary electron generation routes, polymer radiolysis, and electron beam induced charging, are discussed.
Camila Faccini de Lima +2 more
wiley +1 more source

