Results 151 to 160 of about 338,983 (344)
Tooth decay progression transforms the dental pulp response from repair to fibrosis. At early stages, stromal cells reprogram to repair the extra cellular matrix (ECM), blood vessels, and nerves, remodel and grow, keeping repair possible. In advanced decay, hypoxia, and vessel regression, in complement with an immune switch, fuel nerve degeneration and
Hoang Thai Ha +12 more
wiley +1 more source
Promiscuous protein biotinylation by Escherichia coli biotin protein ligase [PDF]
Eunjoo Choi‐Rhee +2 more
openalex +1 more source
High-Biotin Sample Interference on Antibodies Concentration by Sandwich Immunoassays
Geraldo Balieiro Neto +4 more
openalex +2 more sources
This study shows that lower NAM levels in PE‐derived pEVs correlate with disease severity. NAM‐deficient pEVs reduce Th1 and Th17 inhibition, leading to PE‐like symptoms. NAM in pEVs inhibits Th1 via SIRT1 and Th17 via macrophages. Reduced NAM in PE‐EVs is due to decreased HRS expression in trophoblasts, resulting from elevated HSP27.
Haiyi Fei +10 more
wiley +1 more source
Unusual Presentation of Denys-Drash Syndrome in a Girl with Undisclosed Consumption of Biotin
Carla Bizzarri +11 more
openalex +1 more source
In HCC, circZNF79(5) binds to YBX1 and functions as an oncogene, recruits BRCC36 to remove K63‐linked ubiquitin chains to stabilize YBX1 protein, and promotes HCC progression via the HIF‐1 signaling pathway. Conversely, circZNF79(5) silencing activates the AMPK/mTOR pathway, inducing p62‐mediated selective autophagic degradation of YBX1.
Xueqiang Guo +20 more
wiley +1 more source
Associations of Biotin Levels in Serum and Follicular Fluid With ICSI Success: A Cross-Sectional Study From Iraq. [PDF]
Jaafar ZAA, Bakir NA, Salman DA.
europepmc +1 more source
Precise Regulation of Membrane Proteins: From Physical Technology to Biomolecular Strategy
This review summarizes the emerging strategies for the precise regulation of membrane proteins using physical stimuli and biomolecule‐based tools. These methods provide new insights into cell regulation and offer promising directions for future disease treatment.
Xiu Zhao +6 more
wiley +1 more source
BioE is a new diiron oxygenase that catalyzes the conversion of long‐chain acyl groups into pimeloyl thioester, initiating biotin synthesis. The overexpression of EmBioE disrupts lipid metabolic homeostasis, requiring repressor BioL to maintain a balance between long‐chain fatty acids and biotin synthesis.
Meng Zhang +9 more
wiley +1 more source

