Results 151 to 160 of about 5,140,980 (337)

The Potential for Extracellular Vesicles in Nanomedicine: A Review of Recent Advancements and Challenges Ahead

open access: yesAdvanced Biology, EarlyView.
Extracellular vesicles (EVs) play a dual role in diagnostics and therapeutics, offering innovative solutions for treating cancer, cardiovascular, neurodegenerative, and orthopedic diseases. This review highlights EVs’ potential to revolutionize personalized medicine through specific applications in disease detection and treatment.
Farbod Ebrahimi   +4 more
wiley   +1 more source

Real‐time monitoring of small extracellular vesicles (sEVs) by in vivo flow cytometry

open access: yesJournal of Extracellular Vesicles
Extracellular vesicles (EVs) are vesicular structures comprised of a bilayer lipid membrane, released by living cells. There is a growing body of evidence for their functionality, indicating that small EVs (sEVs) can mediate specific forms of ...
Fuli Zhang   +5 more
doaj   +1 more source

Novel Biologically Active Glass Fiber Functionalized Using Magnesium Phosphate Cement Promotes Bone and Vascular Regeneration

open access: yesAdvanced Biology, EarlyView.
In this study, a new type of bioactive glass fiber ‐based composite magnesium phosphate bone cement is prepared and verified that its mechanical strength and biological properties. In addition, the cement may have played a biologically active role in the Notch and HIF signaling pathways.
Yuzheng Lu   +12 more
wiley   +1 more source

Microphysiological Glomerular Filtration Barriers: Current Insights, Innovations, and Future Applications

open access: yesAdvanced Biology, EarlyView.
The glomerular filtration barrier (GFB) is the first step of blood filtration by the kidneys. The concerning increase of kidney diseases makes the development of new models essential. In this context, microphysiological glomerular filtration barriers focus on closely reproducing the physiological architecture of the in vivo GFB: podocytes, glomerular ...
Manon Miran   +5 more
wiley   +1 more source

3D Bioprinting of Thick Adipose Tissues with Integrated Vascular Hierarchies

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
An advanced 3D bioprinting technique is used here to create thick adipose tissues with a central, vessel and extensive branching. The construct is made using alginate, gelatin and collagen‐based bioinks. Flow through the complex vessel network is demonstrated as well as its successful integration with a femoral artery following implantation in a rat ...
Idit Goldfracht   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy