Results 131 to 140 of about 575,594 (234)

Synergistic Osteogenesis After Co‐Administration of cmRNAs Encoding BMP‐2 and BMP‐7 Utilizing a Transcript‐Activated Matrix

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that the dual delivery of BMP‐2/‐7 coding cmRNAs for bone healing is demonstrated as feasible, safe, and highly osteogenic. Compared to single BMP‐2 or BMP‐7 cmRNAs, the combination enhances the production of both mineral and organic components of the extracellular matrix when delivered using a collagen‐HA scaffold, supporting ...
Claudia Del Toro Runzer   +7 more
wiley   +1 more source

Mechanically Tunable Bone Scaffolds: In Vivo Hardening of 3D‐Printed Calcium Phosphate/Polycaprolactone Inks

open access: yesAdvanced Functional Materials, EarlyView.
A 3D bone scaffold with osteogenic properties and capable of hardening in vivo is developed. The scaffold is implanted in a ductile state, and a phase transformation of the ceramic induces the stiffening and strengthening of the scaffold in vivo. Abstract Calcium phosphate 3D printing has revolutionized customized bone grafting.
Miguel Mateu‐Sanz   +7 more
wiley   +1 more source

A Smart Bio‐Battery Facilitates Diabetic Bone Defect Repair Via Inducing Macrophage Reprogramming and Synergistically Modulating Bone Remodeling Coupling

open access: yesAdvanced Functional Materials, EarlyView.
This research presents a novel implantable bio‐battery, GF‐OsG, tailored for diabetic bone repair. GF‐OsG generates microcurrents in high‐glucose conditions to enhance vascularization, shift macrophages to the M2 phenotype, and regulate immune responses.
Nanning Lv   +10 more
wiley   +1 more source

Sequestosome-1/p62 Mediates TLR4-Induced Inflammatory Program in Dendritic Cells Under Normoxic and Hypoxic Conditions. [PDF]

open access: yesCell Mol Life Sci
Coppola F   +6 more
europepmc   +1 more source

Western Blot

open access: yesBIO-PROTOCOL, 2023
openaire   +1 more source

Bimetallic Nanoreactor Activates cGAS‐STING Pathway via mtDNA Release for Cancer Metalloimmunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
A bimetallic Mn–Ca nanoreactor (MCC) is developed as a non‐nucleotide STING nanoagonist for cancer metalloimmunotherapy. MCC induces Ca2+ overload and hydroxyl radical generation, resulting in mitochondrial damage and mtDNA release. The released mtDNA cooperates with Mn2+ to robustly activate cGAS–STING signaling.
Xin Wang Mo   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy