Results 71 to 80 of about 665,936 (311)
Hydrostatic bearings excel in high‐precision applications, but their performance hinges on a continuous external supply. This study evaluates various material combinations for sliding surfaces to mitigate damage during supply failures or misalignment and to discover the most effective materials identified for enhancing the reliability and efficiency of
Michal Michalec+6 more
wiley +1 more source
Developing process parameters for the laser‐based Powder Bed Fusion of metals can be a tedious task. Based on melt pool depth, the process parameters are transferable to different laser scan speeds. For this, understanding the melt pool scaling behavior is essential, particularly for materials with high thermal diffusivity, as a change in scaling ...
Markus Döring+2 more
wiley +1 more source
Hybrid materials enable high‐performance components but are challenging to process. This study explores an inductive heating concept with spray cooling for steel–aluminum specimens in a two‐step process including friction welding and cup backward extrusion.
Armin Piwek+7 more
wiley +1 more source
Body weight and body height assessment in male high school seniors
The purpose of this research was to be evaluated the body weight and body height in male high school seniors. A total measured samples participated in this research was 142 out of who had an average age of 18.27 ± 0.47. (range 18-20 years).
Ajvaz Berisha, Afrim Koca
doaj +3 more sources
Powder Metallurgy and Additive Manufacturing of High‐Nitrogen Alloyed FeCr(Si)N Stainless Steel
The alloying element Nitrogen enhances stainless steel strength, corrosion resistance, and stabilizes austenite. This study develops austenitic FeCr(Si)N steel production via powder metallurgy. Fe20Cr and Si3N4 are hot isostatically pressed, creating an austenitic microstructure.
Louis Becker+5 more
wiley +1 more source
Laser surface texturing significantly improves the corrosion resistance and mechanical strength of 3D‐printed iron polylactic acid (Ir‐PLA) for marine applications. Optimal laser parameters reduce corrosion by 80% and enhance tensile strength by 25% and ductility by 15%.
Mohammad Rezayat+6 more
wiley +1 more source
This article investigates optimal processing conditions for the laser‐based powder bed fusion of WE43. To limit the interaction with remaining oxygen, a 3 vol% hydrogen admixture to the inert gas is investigated. Furthermore, heat treatments are investigated in the range of 250–350 °C for 48 h.
Arvid Abel+9 more
wiley +1 more source
Controlling the size and distribution of dispersoids is essential for optimizing the performance of oxide‐dispersion‐strengthened steels. This study focuses on nanoparticle dispersion and agglomeration during laser additive manufacturing of Fe20Cr alloy reinforced with ZrO 2 nanoparticles. Utilizing multiphysics phase‐field simulations and nanoparticle
Somnath Bharech+6 more
wiley +1 more source
The share of technical thermoplastics is expected to grow further in the e‐mobility segment. In this study, a detailed temperature‐based tribological characterization of technical thermoplastics is performed. The tribological properties are discussed in terms of the dynamic mechanical properties of polymers at different ambient temperatures. A proof of
Harsha Raghuram+2 more
wiley +1 more source
Additive manufacturing technologies like laser powder‐bed fusion offer great design freedom and individualization of products down to a batch size of one. However, parts fabricated with this technology suffer from poor quality. Acoustic assistance during the build process can minimize these drawbacks.
Oliver Maurer, Dirk Bähre
wiley +1 more source