Results 121 to 130 of about 196,593 (268)

Translational Considerations for Injectable Biomaterials and Bioscaffolds to Repair and Regenerate Brain Tissue

open access: yesAdvanced Healthcare Materials, EarlyView.
The repair and regeneration of brain tissue faces both biological and technical challenges. Injectable bioscaffolds offer new opportunities to stimulate tissue regrowth in the brain by recruiting neural stem cells. Here, the translational issues are reviewed that need to be address to advance this promising new therapeutic approach from the bench to ...
Michel Modo, Alena Kisel
wiley   +1 more source

Potential of Recombinant Human Bone Morphogenetic Protein-2 in Bone Regeneration

open access: bronze, 1999
Eliane Porto Barboza   +2 more
openalex   +1 more source

Impaired regeneration of the peripheral B cell repertoire from bone marrow following lymphopenia in old mice [PDF]

open access: bronze, 2001
Fang Li   +4 more
openalex   +1 more source

Xeno‐Free Biocompatible Peptide‐Based Bioinks Reinforced with Cellulose Nanofibers for 3D Printing

open access: yesAdvanced Healthcare Materials, EarlyView.
A xeno‐free bioink combining self‐assembled peptides and cellulose nanofibers is developed for 3D printing. The bioink forms a non‐cross‐linked 3D scaffold, mimicking the extracellular matrix and supporting over 95% cell viability. This approach offers enhanced biocompatibility and mechanical stability, advancing 3D printing for personalized medicine ...
Francesca Netti   +5 more
wiley   +1 more source

Therapeutic Implants: Mechanobiologic Enhancement of Osteogenic, Angiogenic, and Myogenic Responses in Human Mesenchymal Stem Cells on 3D‐Printed Titanium Truss

open access: yesAdvanced Healthcare Materials, EarlyView.
This study investigates a synergistic effect between 3D‐printed surface features and mechanical micro‐strain in enhancing the osteogenic, angiogenic, and myogenic responses of human mesenchymal stem cells (hMSCs). Load‐induced mechanotransduction, facilitated by the implant's architectural design, significantly amplifies hMSC differentiation.
Se‐Hwan Lee   +9 more
wiley   +1 more source

3D‐Printed Multidimensional Bionic Mg‐MC/PLGA Composite for Tailored Repair of Segmental Long Bone Defects

open access: yesAdvanced Healthcare Materials, EarlyView.
This study develops 3D‐printed Mg‐MC/PLGA scaffolds with varying Mg concentrations (0–20%). The 5% Mg scaffold shows optimal cytocompatibility, osteogenic activity in vitro, and significantly enhances bone regeneration in rabbits, improving bone volume and mechanical strength.
Shihang Liu   +9 more
wiley   +1 more source

Exosomes promise better bone regeneration. [PDF]

open access: yesRegen Ther
Hu S   +7 more
europepmc   +1 more source

Functionalized Reduced Graphene Oxide‐Based Nanocomposite Hydrogels for Enhanced Osteogenesis in Bone Tissue Engineering

open access: yesAdvanced Healthcare Materials, EarlyView.
Charge‐opposed reduced graphene oxide fillers are co‐integrated into biopolymeric nanocomposite scaffolds, synergistically enhance osteogenesis. Multiscale characterization reveals how surface chemistry and porosity dictate ectopic mineral architecture.
George Mihail Vlăsceanu   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy