Results 131 to 140 of about 411,380 (346)
Molecular determinants of signal transduction in tropomyosin receptor kinases
Tropomyosin receptor kinases control critical neuronal functions, but how do the same receptors produce diverse cellular responses? This review explores the structural mechanisms behind Trk signaling diversity, focusing on allosteric modulation and ligand bias.
Giray Enkavi
wiley +1 more source
Molecular Mechanisms of Subtype-Specific Inhibition of Neuronal T-Type Calcium Channels by Ascorbate
T-type Ca2+ channels (T-channels) are involved in the control of neuronal excitability and their gating can be modulated by a variety of redox agents. Ascorbate is an endogenous redox agent that can function as both an anti- and pro-oxidant.
M. T. Nelson +12 more
semanticscholar +1 more source
Skin biopsies taken from a patient with an ultra‐rare disorder as well as controls were cultured for up to 473 days. The chunks of skin were serially transferred to a new culture plate when confluent with fibroblasts. Different generations of fibroblasts were analyzed for cell and molecular properties, proliferation, and competence for reprogramming to
Sudiksha Rathan‐Kumar +3 more
wiley +1 more source
Recently, telocytes (TCs) were described as a new cell type in the interstitial space of many organs, including myometrium. TCs are cells with very long, distinctive extensions named telopodes (Tps).
S. Crețoiu +6 more
semanticscholar +1 more source
Excess Ca2+ ions activate the Calcium‐Sensing Receptor (CaSR), which subsequently drives the uptake of excess inorganic phosphate (Pi) via the Pi transporter (Pit−1) in chondrocytes. This mechanism causes a toxic increase in intracellular Pi concentration, ultimately leading to chondrocyte apoptosis and pathological mineralization. Excess extracellular
Sachie Nakatani +7 more
wiley +1 more source
Light activation of the photoswitchable cannabinoid ligand azo‐HU308 triggers Ca2+ influx in pancreatic β‐cells through TRPC channels, independent of CB2 cannabinoid receptors. This reveals a non‐GPCR pathway for cannabinoid modulation of β‐cell Ca2+ dynamics and establishes azo‐HU308 as an optical tool to study cannabinoid signaling through TRP ...
Alexander E. G. Viray, James A. Frank
wiley +1 more source
Neonatal brain is particularly vulnerable to pathological levels of bilirubin which elevates and overloads intracellular Ca2+, leading to neurotoxicity.
Min Liang +9 more
doaj +1 more source
GABA_{B} Receptors Regulate Chick Retinal Calcium Waves [PDF]
Correlated spiking activity and associated Ca²⁺ waves in the developing retina are important in determining the connectivity of the visual system. Here, we show that GABA, via GABA_{B} receptors, regulates the temporal characteristics of Ca²⁺ waves ...
Catsicas, M, Mobbs, P
core
Inhibition of Recombinant Human T-type Calcium Channels by Δ9-Tetrahydrocannabinol and Cannabidiol*
Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most prevalent biologically active constituents of Cannabis sativa. THC is the prototypic cannabinoid CB1 receptor agonist and is psychoactive and analgesic. CBD is also analgesic, but it is not
H. R. Ross, I. Napier, M. Connor
semanticscholar +1 more source
TMC4 localizes to multiple taste cell types in the mouse taste papillae
Transmembrane channel‐like 4 (TMC4), a voltage‐dependent chloride channel, plays a critical role in amiloride‐insensitive salty taste transduction. TMC4 is broadly expressed in all mature taste cell types, suggesting a possible involvement of multiple cell types in this pathway.
Momo Murata +6 more
wiley +1 more source

